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Abstract 

Background:  Like many scientific fields, epidemiology is addressing issues of research reproducibility. Spatial epi-
demiology, which often uses the inherently identifiable variable of participant address, must balance reproducibility 
with participant privacy. In this study, we assess the impact of several different data perturbation methods on key 
spatial statistics and patient privacy.

Methods:  We analyzed the impact of perturbation on spatial patterns in the full set of address-level mortality data 
from Lawrence, MA during the period from 1911 to 1913. The original death locations were perturbed using seven dif-
ferent published approaches to stochastic and deterministic spatial data anonymization. Key spatial descriptive statis-
tics were calculated for each perturbation, including changes in spatial pattern center, Global Moran’s I, Local Moran’s 
I, distance to the k-th nearest neighbors, and the L-function (a normalized form of Ripley’s K). A spatially adapted form 
of k-anonymity was used to measure the privacy protection conferred by each method, and its compliance with 
HIPAA and GDPR privacy standards.

Results:  Random perturbation at 50 m, donut masking between 5 and 50 m, and Voronoi masking maintain the 
validity of descriptive spatial statistics better than other perturbations. Grid center masking with both 100 × 100 and 
250 × 250 m cells led to large changes in descriptive spatial statistics. None of the perturbation methods adhered to 
the HIPAA standard that all points have a k-anonymity > 10. All other perturbation methods employed had at least 265 
points, or over 6%, not adhering to the HIPAA standard.

Conclusions:  Using the set of published perturbation methods applied in this analysis, HIPAA and GDPR compliant 
de-identification was not compatible with maintaining key spatial patterns as measured by our chosen summary 
statistics. Further research should investigate alternate methods to balancing tradeoffs between spatial data privacy 
and preservation of key patterns in public health data that are of scientific and medical importance.
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Background
Researchers in public health, medicine, and the social sci-
ences are facing a reproducibility crisis that continues to 
grow with the complexity of data collection, cleaning, and 

analysis pipelines. A reproducible study has been defined 
broadly as one from which a researcher can duplicate 
results using the data from the original analysis and the 
methods described in the study [1]. To meet these stand-
ards, many peer-reviewed journals are implementing pol-
icies to increase data transparency and public availability. 
In practice, meeting this standard can prove to be quite 
difficult. These issues are magnified in public health and 
medicine, where ethical and legal protections of patient 
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and research subject privacy must be considered ahead 
of the public health and scientific benefits of reproduc-
ibility. These issues are particularly acute for spatially 
referenced disease and health data which may reveal 
not only the identity but the spatial location of individu-
als with sensitive health conditions, e.g. HIV infection, 
or behavioral risks such as injection drug use [2]. These 
roadblocks to a consistently reproducible spatial epide-
miology have limited the application of powerful spati-
otemporal analytic tools in public health practice. This 
represents a significant loss to public health, as such data 
can provide insights into how to best intervene on a wide 
range of health conditions, ranging from those associated 
with exposure to environmental toxicants, spatially con-
centrated social inequality, and infectious disease trans-
mission [3–6].

For example, as recent work in the area of vaccine-pre-
ventable diseases has shown, the scale at which such data 
are reported can determine the nature and the quality of 
inferences that can be drawn from them [7]. In recent 
months, the COVID-19 pandemic has shown the cru-
cial role of understanding the determinants of fine-scale 
spatial variation in infection outcomes, as such data are 
key for understanding differential risks of mortality by 
age, socioeconomic status and as a function of neighbor-
hood environments. This has created an unprecedented 
amount of interest in making individual level case data 
publicly available, with multiple sources producing maps 
of case and testing rates [8–11]. As analysts produce 
maps for public release in the rapidly changing pandemic 
setting, maintaining individuals’ privacy is increasingly 
essential as stigma-driven harassment also increases [12, 
13]. While all maps are using aggregated counts, the level 
to which data has been aggregated varies; some maps are 
providing data at as low a level as the zip code level while 
many only release information by county [8–11]. More 
granular maps have suppressed data for zip codes with 
limited numbers of cases, but there are no standardized 
limits for data release [10].

A number of geomasking methods have been pro-
posed to address the problem of identifiability in pub-
licly released spatial health data. Geomasking algorithms 
shift the coordinates of a point of interest in a way 
that is intended to reduce the likelihood of identifica-
tion of all individuals in the dataset to the point that it 
no longer presents a meaningful risk of identification. 
However, there has been relatively little attention paid 
to the amount of spatial information lost relative to pri-
vacy protection gained from each of these approaches. In 
this paper, we measured the tradeoff between increased 
privacy and spatial information loss provided by a 
wide variety of geomasking approaches applied to the 
same detailed dataset. We used an array of geographic 

perturbation methods described in the literature on spa-
tial analysis and medical geography, which are commonly 
employed in the public release of sensitive spatial data, as 
well as a widely-used metric of anonymization known as 
k-anonymity [14].

A better understanding of the nature and extent of 
these tradeoffs is necessary to allow researchers, regu-
latory bodies such as IRBs, and data providers such as 
public health departments and hospitals, agree on spatial 
perturbation methods that can preserve patient or partic-
ipant privacy, while understanding how they may result 
in potential biases that could limit the utility of such data 
for different types of analyses.

The acceptable ratio of information lost to privacy gain 
is likely to vary as a function of (1) the sensitivity of the 
underlying data, (2) the nature of the data sharing, e.g. 
with a trusted partner subject to a data use agreement vs. 
wide public release, and (3) the public health urgency of 
the problem the data may aid in solving. These questions 
have always been pertinent, but the COVID-19 pandemic 
has forced them towards the front of the conversation.

Privacy‑first reproducibility
A commonly discussed standard for reproducibility in 
public health and medicine is that published analyses 
should include access to all underlying data, the exact 
methods employed from data processing to analysis and 
figure generation (including the code to run all analy-
ses), and documentation sufficient to run the provided 
code on the provided data and obtain the published 
results [15]. Finally, all of these components should 
be distributed in a way that makes them widely acces-
sible (e.g. under a permissive software license, hosted 
on an open and visible platform such as github) [15]. 
Done properly, this allows others to directly validate 
results, rapidly deploy new methods and pursue alter-
nate hypotheses using the original data [16]. However, 
this maximally transparent approach is ethically and 
legally prohibited when the relevant data contain iden-
tifiable information including home addresses and key 
patient demographics. These are considered protected 
health information (PHI) under the Health Insurance 
Portability and Accountability Act (HIPAA) in the 
United States, and the General Data Protection Regu-
lation (GDPR) in the European Union. Therefore, this 
data cannot be publicly released in an unmasked form 
[17]. While other countries have implemented protec-
tion measures for individual’s privacy, a 2016 update 
of the GDPR made it one of the strongest data protec-
tion laws, so methods that comply with the GDPR will 
likely comply with other protection policies [18]. In 
this paper, we argue for and outline the contours of a 
privacy first approach to reproducibility that balances 
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these ethical and legal obligations to individuals with 
potential benefits to public health. While results may 
not be completely replicable (in which the exact same 
results are obtained), they can be reproducible (the 
same methods can be applied and results are similar) 
and data can be transparently submitted as the results 
are peer-reviewed. Although the HIPAA statute an 
GDPR do not lay out specific standards for what consti-
tutes an unacceptable level of identifiability, a common 
interpretation of HIPAA requirements on data release 
is that each data point must be indistinguishable from 
at least 10 others in the same dataset [19].

Under HIPAA and GDPR, data may be released after all 
identifiable information is removed; under HIPPA, this 
refers to 18 specific attributes, whereas under the GDPR 
it means any information that may lead to the direct or 
indirect identification of a person [17, 18]. The unit of 
interest in geospatial epidemiology—an individual’s loca-
tion or set of locations visited over time—is clearly sensi-
tive, identifiable information, and therefore methods for 
deidentification of spatial data must be robust to mali-
cious reverse engineering. Despite the importance of 
these methods for completing privacy-respecting repro-
ducible research, little is known about how to leverage 
different methods of spatial perturbation to accomplish 
the twin goals of (1) maximizing participant privacy (i.e. 
minimizing identifiability) while (2) maintaining key spa-
tial patterns necessary for reproducibility and verification 
of published results [20]. Because of this lack of guid-
ance on how to best de-identify individual-level spatial 
health data to maintain compliance, spatial epidemiolo-
gists and other health researchers face significant barri-
ers to reproducibility. HIPAA outlines two approaches by 
which de-identification can be considered to have been 
achieved:

1.	 Safe harbor: This method requires the removal of all 
identifiers. Only the first three digits of zip codes are 
maintained if “the geographic unit formed by com-
bining all ZIP codes with the same three initial digits 
contains more than 20,000 people”. If the geographic 
unit contains 20,000 or fewer people, all five digits of 
the ZIP code are removed [21].

2.	 Expert determination: Under this approach, “a per-
son with appropriate knowledge of and experience 
with generally accepted statistical and scientific prin-
ciples and methods for rendering information not 
individually identifiable” implements a scientifically 
verified method on spatially identifiable data until 
there is “very small risk that [the] intended recipi-
ent could identify [the] individual” [17]. Although 
HIPAA does not explicitly quantify this risk, it is 
commonly interpreted as each individual being indis-

tinguishable from at least 9 other individuals in the 
dataset [19].

The GDPR employs criteria similar to expert deter-
mination, stating that anonymous data is no longer 
protected and anonymity is achieved when the data is 
manipulated in a manner by which it could not be re-
identified by “all the means likely reasonably to be used” 
[18]. Like HIPAA, this does not provide a single metric 
of spatial anonymity. Despite efforts to develop geo-
masking methods that can meet these standards, there 
is no consensus on how to choose an approach. Previous 
work in this area has tested only one or a small number 
of perturbation approaches at a time [22–24], making 
comparison to other perturbation methods infeasible. 
The primary measure of privacy employed by these stud-
ies is k-anonymity. However, the implementation of this 
metric across studies has been inconsistent [22–24]. In 
this study, we implemented seven perturbation methods 
using a single dataset, and we compared outcomes using 
a k-anonymity metric appropriate to our data, in which 
only deaths are geocoded.

Methods
Data
We geocoded the household location of each of the 
4050 deaths recorded in Lawrence, Massachusetts from 
1911 to 1913. We used a historical dataset so that the 
underlying data can be released while complying with 
HIPAA and GDPR standards, as all individuals have been 
deceased for > 50  years [17]. We used ArcGIS Version 
10.6.1 to create a complete map of the city limits from 
a set of historical maps. Each address in the death reg-
ister was located and geocoded using the original maps. 
Shapefiles for boundaries of the city of Lawrence, Mas-
sachusetts, and the Merrimack River were obtained from 
Mass.gov [25, 26].

Analysis
We employed seven different perturbation methods, 
which were selected to capture the range of approaches 
that are useful and feasible with case-only data, as com-
pared to case–control data. We examined both non-
aggregating perturbations, which move points to unique 
locations, and aggregating perturbations, which agglom-
erate points into a single location.

Non‑aggregating perturbations

1.	 Random perturbation: Each case is moved a ran-
domly selected distance in a randomly selected direc-
tion. Perturbed locations are not restricted to the 
bounds of the study area, but two maximum pertur-
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bation distances were employed, restricting points to 
locations within a 50- or 250-m radius. These radii 
were selected because each point has on average 
approximately 12 points within 50  m of it and 182 
within 250  m of it, so moving the points these dis-
tances could potentially have as many as 11 and 181 
points closer to the original point than the perturbed 
point (Fig. 1).

2.	 Random weighted perturbation: Same as random 
perturbation, but the maximum distance for each 
case is constrained to the distance to the point’s k-th 
nearest neighbor. We implemented random weighted 
perturbation twice, with points moved within the 
distance of the 5th and 50th nearest neighbors. These 
k-th neighbor values were selected to test different 
levels of anonymity since moving a point the distance 
to its k-th nearest neighbor means it could poten-
tially have as many as k-1 points closer to the original 
point than the perturbed point.

3.	 Donut masking: Each case is moved in a random 
direction within a random distance constrained to an 

interval defining a maximum and minimum distance 
[27]. Donut masking was implemented twice, with 
points moved between 5–50 m and 50–250 m. These 
distances were chosen because they moves points 
between the 1st and 5th nearest neighbors and 5th 
and 100th nearest neighbors, respectively (Fig. 2).

4.	 Horizontal shear: Cases are perturbed using a lin-
ear transformation to shear the data horizontally. 
We shifted each point along its x axis until it was 45° 
away from its original position relative to the center 
of the distribution of points [24] (Fig. 3).

5.	 Voronoi masking: This approach moves each case to 
a point on the nearest edge of its Voronoi tessellation, 
or the polygon around the original points where the 
lines are equidistant to the point and its nearest points 
[28]. Although Voronoi masking does not always move 
points together, if two points are both each other’s 
nearest neighbor, they will be snapped together so 
Voronoi masking does have some degree of aggregat-
ing effect (Fig. 4).

Original Points Perturbation is Applied Perturbed Points 

Original points are 
shown in red 

Each point is 
circumscribed using a 
pre-determined radius  

Points randomly 
relocated within the 
circle  

The newly perturbed 
points are shown in blue  

Fig. 1  Visual representation of random perturbation

Fig. 2  Visual representation of donut masking
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Aggregating perturbations
Aggregating perturbations move multiple points to the 
same centroid of a cell within a user-defined grid, effec-
tively hiding the individual within a larger population 
[29]. We employed two methods of aggregation adapted 
from Seidl et al. [22]:

1.	 Grid line masking: Points are moved to the nearest 
edge of their enclosing grid cell (Fig. 5).

2.	 Grid center masking: Points are moved to the cen-
troid of the cell within which they are located (Fig. 6).

To understand how the resolution of the grid employed 
impacts our outcomes, both of these were performed 
using a fine-scale grid (100  m × 100  m, or roughly the 
average distance to the 20th nearest neighbor) and a 
coarser one (250 m × 250 m, or roughly the average dis-
tance to the 100th nearest neighbor).

Original points are 
shown in red 

Original Points Perturbation is Applied Perturbed Points 

The midpoint of the 
data is the intersection 
of the lines  

Points are moved 45 
degrees clockwise  

The newly perturbed 
points are shown in blue

Fig. 3  Visual representation of horizontal shear

Original points are 
shown in red 

Original Points Perturbation is Applied Perturbed Points

The Voronoi 
tessellation is lines 
equidistant to the 
nearest points 

Points are moved to the 
nearest edge of the 
Voronoi tessellation  

The newly perturbed 
points are shown in blue  

Fig. 4  Visual representation of Voronoi masking

Original points are 
shown in red 

Original Points Perturbation is Applied Perturbed Points

A grid is fit over the 
data 

Points are moved to the 
nearest edge of the grid  

The newly perturbed 
points are shown in blue  

Fig. 5  Visual representation of grid line masking
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Spatial measures
To determine how much and which types of informa-
tion were preserved by each approach, we compared each 
perturbed dataset to the original data using multiple spa-
tial statistics:

1.	 Point center: The center of the spatial distribution is 
calculated as the mean and median of the point coor-
dinates, comparing each perturbation to the original 
data. The difference in mean and median from the 
unperturbed data was calculated as the Euclidean 
distance between the points. Changes in the center 
of the spatial distribution demonstrate the overall 
movement of points resulting from each perturba-
tion.

2.	 Global Moran’s I: This is a measure of spatial clus-
tering ranging from − 1 (complete separation) to 1 
(complete clustering) [30]. Points were aggregated 
to 200 × 200 m cells and Global Moran’s I was calcu-
lated to compare if the number of deaths in a cell is 
overall similar or dissimilar to the number of deaths 
in surrounding cells.

3.	 Local Moran’s I: This is a measure of local spa-
tial autocorrelation, indicating how similar a spa-
tial unit is to its surrounding neighbors. As with 
Global Moran’s I, values range from [− 1, 1] [31]. 
As with Global Moran’s I, points were aggregated to 
200 × 200 m cells.

4.	 Distance to Kth-nearest Neighbor: For each per-
turbation, the average distance of a death to its 1st, 
5th, 10th, and 20th neighbors was calculated and 
compared to the same distance in the unperturbed 
data as in [22]. As points become more clustered in 
space, average distance to the kth nearest neighbor 
decreases. Examining the 1st, 5th, 10th, and 20th 
neighbor allows us to measure the magnitude of clus-
tering or dispersion conferred by a perturbation.

5.	 L-Function: The last spatial metric computed is the 
L-function, a normalized form of Ripley’s K. The 
L-function calculates the expected number of points 
within a multi-dimensional ball o f radius r, divided 
by the volume of the ball [32]. This is used to assess 
whether the points within a fixed distance of a given 
location demonstrate clustering or repulsion to an 
extent greater than would be expected by random 
chance alone.

Measuring de‑identification
We used k-anonymity, which is a metric widely used to 
measure the degree of privacy conferred by a particular 
perturbation. Specifically, in a dataset with a k-anonymity 
of 10, each released record is indistinct from at least 9 
(k − 1) other records [14]. For non-spatial data, this typi-
cally requires deleting or randomizing data fields until 
there are at least k − 1 indistinct records for each case. 
In the context of spatial data, k-anonymity refers to the 
number of perturbed points closer to the unperturbed 
point than its own perturbation. An individual point’s 
k-anonymity is measured using the number of newly per-
turbed points that fall within a circle around the point’s 
new, perturbed location, with the radius of that circle 
equal to the distance the point was moved by the pertur-
bation [23]. When using datasets that include locations 
of non-case data, these can be included in the k-anonym-
ity measure as points the case is indistinguishable from; 
since our data did not include non-case data, this inter-
pretation of K-anonymity was used. K-anonymity is typi-
cally reported as both the average k across each point in 
the dataset, as well as the minimum k. To ensure protec-
tion for all subjects, if the minimum k-anonymity for any 
point is < 10, the perturbation is not considered to meet 
HIPAA de-identification standards. Because the k-ano-
nymity provided by a perturbation is a function of the 
spatial density of the data, we performed perturbations 

Original points are 
shown in red 

Original Points Perturbation is Applied Perturbed Points

A grid is fit over the 
data 

Points are moved to the 
center of the grid cell  

The newly perturbed 
points are shown in blue  

Fig. 6  Visual representation of grid center masking
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on both the full dataset as well as down-sampled data, 
e.g. randomly sampling only 75% of the available points, 
to understand the impact of the density of the unper-
turbed data on the degree of anonymity conferred by 
each approach (Fig. 7).

Results
In this section, we review the impact of each of the dif-
ferent approaches to perturbation outlined above on the 
spatial characteristics of the perturbed datasets, as well as 
the degree of anonymization conferred by each approach. 
Maps of illustrating the impact of the perturbation on the 
mortality data are available in Appendix (Fig. 8).

Impact of perturbation on key spatial statistics

Point center: Affine shear moved the median of the 
spatial distribution the farthest Euclidean distance, 
followed by grid center masking with 100 × 100  m 
cells, and grid center masking with 250 × 250 m cells, 
which moved the median 123  m, 42  m, and 33  m, 
respectively. All other perturbations had little effect, 
moving the median spatial center less than 10  m in 
Euclidean distance; additionally, none of the pertur-
bations moved the mean center of the spatial dis-

tribution more than 5  m in Euclidian distance. The 
effects of each perturbation can be seen in Table 1.
Global and Local Moran’s I: When aggregating 
points to 200 × 200  m cells, the unperturbed data 
had a Global Moran’s I of 0.58, indicating posi-
tive spatial autocorrelation between the numbers 
of deaths in each cell. Although all the perturba-
tions maintained a positive value of Global Moran’s 
I, grid center masking with both 100 × 100  m and 
250 × 250 m cells resulted in greatly decreased val-
ues of I, from 0.58 to 0.36 and 0.30, respectively. 
Grid line masking with 250 × 250  m cells and ran-
dom weighted perturbation within the 5th near-
est neighbor also decreased the Global Moran’s I 
to 0.52 and 0.55, respectively. All other perturba-
tions increased the I value, with donut masking 
between 50 and 250 m increasing the value the most 
to 0.79. The effects of all perturbations can be seen 
in Table  2. Trends of local Moran’s I were similar. 
Choropleths of Local Moran’s I demonstrate the 
change in spatial autocorrelation for the number of 
deaths per 200 × 200 m cells and can been viewed in 
Fig. 9 of Appendix.
Distance to kth-Nearest Neighbor: For each per-
turbation, as k increased, the average distance to 

Fig. 7  Visual representation of K-anonymity using only the geocoded points and no underlying population data
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the k-th nearest neighbor became more similar to 
the distances for the unperturbed data. Aggregat-
ing perturbations decreased the average distance at 
all values of k, while non-aggregating perturbations 
increased the distance to the k-th nearest neighbor. 
Voronoi masking, which has both aggregating and 
non-aggregating properties because some points 
are moved together, greatly decreased the average 
distance to the 1st nearest and neighbor but main-
tained the average distance to all other neighbors 
(Table 3).

L-Function: To understand the impact of each per-
turbation on the spatial dispersion of points, the 
L-function was measured for each perturbation and 
compared to the original data. Voronoi masking had 
the least effect on the L-function, while affine shear 
and grid center masking at both 100- and 250-m cells 
had the greatest. Results can be seen in Fig.  10 of 
Appendix.

Impact of perturbation on data privacy
Using the complete dataset, there was no perturbation 
that met the HIPAA standard of including no points with 
k-anonymity < 10. For clarity, we denote k-anonymity as ρ 
and average k-anonymity as ρ . Affine shearing provided 
the greatest privacy protection, with 265 cases (6.5%) 
with ρ < 10 and 134 cases (3.3% of cases) with ρ < 5. 
Grid center masking with 250  m2 cells resulted in 357 
cases (8.8% of cases) with ρ < 10 and 159 (3.9% of cases) 
with ρ < 5 . All other approaches left at least 623 cases 
(or 15.4% of all cases) with ρ < 10. Voronoi masking con-
ferred the least anonymity, with ρ = 1.90 and all points 
having ρ < 10. When using a random sample of 75% of the 
cases, none of the perturbations met the HIPAA standard 
of all points having a k-anonymity greater than or equal 
to 10. As the percent of points released decreases, ano-
nymity for those points also fell, underscoring how high 
spatial density increases individual privacy when meas-
ured using k-anonymity. K-anonymity for all perturba-
tions with multiple sub-samples of the data are presented 
in Table 4 in Appendix.

Taken together, our results indicate that obtaining 
the level of de-identification required by HIPAA, GDPR 

Table 1  Euclidean distance between  the  original spatial 
center of  the  distribution, as  depicted by  both  median 
and mean of the points

Perturbation method Change in median Change 
in mean

Original data 0 0

Random perturbation 50 m 0.32 0.11

Random perturbation 250 m 0.79 0.82

Random perturbation 500 m 18.54 0.63

Random weighted perturbation 5 NN 1.76 0.35

Random weighted perturbation 50 NN 3.69 1.09

Donut between 5 and 50 m 3.76 0.28

Donut between 50 and 250 m 2.65 5.58

Affine shear 123.49 0.38

Voronoi masked 0.84 0.18

Grid center w/100 m cells 42.09 1.6

Grid center w/250 m cells 32.91 4.29

Grid line w/100 m cells 7.91 0.6

Grid line w/250 m cells 6.68 1.29

Table 2  Global Moran’s I statistic for each of the perturbation methods

Perturbation method Global Moran’s I Proportion of unperturbed I Variance in I

Original data 0.49 1 0.49302

Random perturbation 50 m 0.54 0.91 0.54023

Random perturbation 250 m 0.82 0.6 0.82067

Random perturbation 500 m 0.89 0.55 0.88739

Random weighted perturbation 5 NN 0.57 0.86 0.56697

Random weighted perturbation 50 NN 0.58 0.84 0.57983

Donut between 5 and 50 m 0.55 0.89 0.54593

Donut between 50 and 250 m 0.8 0.61 0.80124

Affine shear 0.54 0.91 0.53597

Voronoi masked 0.48 1.02 0.48222

Grid center w/100 m cells 0.36 1.36 0.35639

Grid center w/250 m cells 0.3 1.63 0.30335

Grid line w/100 m cells 0.47 1.04 0.47285

Grid line w/250 m cells 0.44 1.11 0.43534
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and similar regulatory standards using the perturbation 
methods we employed, significant alterations of some 
key spatial patterns were required. Affine shearing pro-
vided the greatest K-anonymity but had large impacts 
on the spatial center of the distribution and strongly 
altered patterns of Local Moran’s I. Grid-center mask-
ing with 250-m cells provides the next greatest K-ano-
nymity, but also significantly alters values of key 
statistics, including global and local Moran’s I, and Rip-
ley’s K/L.

Discussion
Our results show that the wide range of perturbation 
methods applied in this analysis were not compatible 
with HIPAA and GDPR-compliant de-identification 
when the results also maintained key spatial patterns as 
measured by the chosen summary statistics. This high-
lights the significant challenge of safely releasing spatial 
health datasets while preserving enough information 
content to make them useful for analysis. Affine shear 
conferred the greatest anonymity using the k-anonym-
ity metric and maintained some spatial patterns. How-
ever, the method is not secure, as points can be trivially 
re-identified if the angle of the shearing can be deter-
mined. Spatial features, such as the Merrimack River 
in this dataset, would indicate where the true locations 
of cases could not be, and reverse-engineering around 
these and other geographic features could then eas-
ily be undone to obtain the shearing angle. Grid center 
masking with cells of 250 × 250  m resulted in large 
changes in global Moran’s I values and dramatically 

altered the distribution of local clustering indicators 
(e.g. local Moran’s I) but also provided the greatest de-
identification as measured by k-anonymity that is not 
as vulnerable to reverse engineering as easily as affine 
shearing. However, grid center masking with cells of 
250 × 250  m still did not meet HIPAA standards for 
privacy (minimum ρ ≥ 10 for the entire dataset) with 
357 cases with ρ < 10.

Voronoi masking, random perturbation, and random 
weighted perturbation had the smallest impact on the 
original spatial patterns, but also provided minimal de-
identification, with hundreds of points having ρ < 10 
and a minimum ρ = 1. Voronoi masking was either 
the first or second closest to the original value for all 
measures of spatial aggregation, indicating that while 
unaltered Voronoi masking may not provide de-iden-
tification thorough enough to meet HIPAA standards, 
it does maintain underlying spatial patterns better than 
other methods of geomasking. This suggests that efforts 
to build on Voronoi-based approaches may be fruitful. 
For example, using multiple iterations of the Voronoi 
tessellation algorithm, known as Lloyd’s algorithm, as 
well as combining a stochastic perturbation technique 
with Voronoi masking [33]. Another possibility is to 
take an iterative approach to maximizing k-anonymity, 
e.g. by applying a stronger perturbation to individu-
als ρ < 10 after the first application of an approach that 
works well and provides ρ ≥ 10 for the large majority of 
points.

Although closer to the regulatory standards than all 
other perturbations except affine shear, grid center 

Table 3  Distance to different nearest neighbors compared to the unperturbed data

Perturbation method K = 1 Proportion 
of original 
K = 1

K = 5 Proportion 
of original 
K = 5

K = 10 Proportion 
of original 
K = 10

K = 20 Proportion 
of original 
K = 20

Original data 14.57 1 47.67 1 71.42 1 104.09 1

Random perturbation 50 m 20.52 1.41 52.19 1.09 74.28 1.04 106.41 1.02

Random perturbation 250 m 25.07 1.72 62.03 1.3 87.37 1.22 122.83 1.18

Random perturbation 500 m 27.2 1.87 67.12 1.41 95.37 1.34 134.57 1.29

Random weighted perturbation 5 NN 20.38 1.4 48.54 1.02 71.65 1 104.73 1.01

Random weighted perturbation 50 NN 25.02 1.72 60.06 1.26 85.36 1.2 118.45 1.14

Donut between 5 and 50 m 20.5 1.41 52 1.09 74.45 1.04 106.31 1.02

Donut between 50 and 250 m 24.95 1.71 61.28 1.29 86.8 1.22 122.93 1.18

Affine shear 15.2 1.04 48.6 1.02 73.03 1.02 106.97 1.03

Voronoi masked 5.59 0.38 46.38 0.97 70.77 0.99 103.29 0.99

Grid center w/100 m cells 5.94 0.41 34.79 0.73 62.48 0.87 97.84 0.94

Grid center w/250 m cells 1.53 0.11 12.82 0.27 29.1 0.41 62.89 0.6

Grid line w/100 m cells 11.39 0.78 44.58 0.94 69.86 0.98 104.75 1.01

Grid line w/250 m cells 7.31 0.5 32.94 0.69 58.26 0.82 94.25 0.91
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masking with cells of 250 × 250 m strongly degraded all 
of the spatial measures employed. Because grid center 
masking is an aggregating perturbation, it decreased 
the distance to kth-nearest neighbors as well as Global 
Moran’s I. Although grid center masking with such large 
cells may not provide high fidelity for spatial statistics at 
the fine scale examined here, the deterministic nature of 
the of perturbation results in predictable biases of the 
underlying statistics. A further analysis of these relation-
ships may be helpful for estimating correction factors 
that can be used to adjust estimates derived from per-
turbed data so that they are closer to those derived from 
the underlying data.

Our analysis has a number of strengths. Unlike previ-
ous research, the anonymity metric used to measure de-
identification was specifically derived from the HIPAA 
standard and also meets GDPR standards. This pro-
vides a realistic measure of the likelihood that a given 
approach will produce outputs that accord with global 
health privacy laws. Additionally, our direct compari-
sons of a variety of perturbation measures using a sin-
gle policy-relevant anonymization metric may aid in the 
development of a consensus around how and when these 
different approaches should be applied.

Despite these strengths, these results also have several 
important limitations. For example, they are limited by 
the use of a single spatial dataset characterized by strong 
spatial clustering representative of data from a densely 
populated urban neighborhood or small city. The lack 
of data about surrounding non-case households also 
prevented the use of some advanced geomasking tech-
niques [34–36]. It is also unavoidable that different 
perturbations will have different implications when the 
underlying data have different spatial characteristics, 
e.g. the presence of multiple distinct spatial clusters, 
lower density of points over a larger spatial area, etc. 
In addition, the original mortality data demonstrated 
significant spatial autocorrelation with a statistically 
significant Global Moran’s I of 0.58. Because aggregat-
ing perturbations will always move points together and 
create empty spaces where points previously were, they 
will always bias Moran’s I towards greater dispersion 
given the true underlying distribution. If the true data 
were less clustered, aggregating methods of perturba-
tion might produce different biases. An important next 
step towards developing a set of broadly-applicable best 
practices for privacy-first reproducibility is performing 
the analyses presented here on datasets characterized 
by different densities and spatial scales. Future stud-
ies should investigate the effect that differences in the 
underlying data have on the tradeoff between de-identi-
fication and maintenance of spatial patterns.

Despite its broad use as a measure of spatial anonym-
ity, k-anonymity may in fact not be ideal for this purpose. 
For example, in the context of non-spatial data, ensur-
ing that an individual cannot be distinguished from k 
other individuals in the same dataset may be reasonable. 
Although this dataset allowed for a realistic examina-
tion of anonymity when only cases are geocoded, addi-
tional information about the background population 
would allow for a different interpretation of k-anonymity. 
However, k-anonymity for spatial data is heavily influ-
enced by the point density of the original data: if points 
are very close together, the k-anonymity conferred by a 
perturbation may be large even though the actual dis-
tance between the original and perturbed locations is 
very small. The risk posed to privacy becomes clear when 
other sources of spatial population data are available, e.g. 
from census data or via projects such as WorldPop [37]. 
This means that individuals not included in the origi-
nal dataset may be at risk of identification when spatial 
data and key publicly available metadata elements are 
linked (e.g. population density, age distributions, race/
ethnicity, sex/gender breakdowns). Consequently, even 
if a perturbation increases within-dataset anonymity, it 
may have little to no impact on privacy at the population 
level if it provides information on risk in the underlying 
population that can be extracted via approaches such as 
a kriging and other methods of spatial interpolation and 
smoothing.

Future studies should investigate alternative 
approaches to spatial de-identification that address the 
limitations of within-dataset k-anonymity discussed here. 
More advanced geomasking techniques exist that require 
additional information about surrounding households; 
location swapping, the verified neighbor approach, and 
adaptive aerial elimination may provide greater ano-
nymity but also require extensive spatial information 
about the region. These methods require not only the 
locations of cases, but also the centroids of surrounding 
households which are not always available, such as with 
our dataset [34–36]. In addition, these questions become 
more complex when additional information beyond the 
spatial location of a case is included in a dataset, e.g. age, 
sex, comorbidity status, etc.

Conclusions
Resolving the technical, ethical and legal issues sur-
rounding spatial data anonymization will have positive 
benefits for researchers, patients, and policymakers 
across the health sciences. The urgency of these ques-
tions is clear: as the response to COVID-19 has shown, 
high-resolution data can be helpful for informing both 
short-term tactics and long-term strategies in pub-
lic health response [38, 39]. But the benefits of more 
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granular public data will not be realized if individual 
privacy cannot be reliably protected. For such tools 
to be useful in future emergencies, a well-defined and 
agreed-upon set of privacy and technical standards 
for anonymization must be available so that they can 
be rapidly deployed while meeting ethical and legal 
standards.

Although we used HIPAA as a benchmark, the 
approaches described here have clear relevance to other 
types of data not subject to HIPAA protection, but for 
which ethical and legal barriers to full reproducibility 
still exist. For example, effective intervention to prevent 
human trafficking and other forms of exploitation may 
aided by geospatial data, while the underlying location 
of reported events is clearly sensitive and may be legally 
protected in some jurisdictions, e.g. under GDPR rules.

Ultimately, there are no one-size-fits-all solutions 
to the problem of spatial data anonymization. Instead, 
open-source software employing validated approaches 
to secure data anonymization are necessary to attain 
the balance of anonymization and fidelity necessary 
to meet privacy standards while maintaining util-
ity for the intended application. Our analysis repre-
sents a step towards achieving these goals. However, 
further research focused on facilitating openness and 
reproducibility while complying with ethical and legal 
standards is sorely needed to advance the impact of the 
spatial sciences across public health, medicine, and the 
social sciences.
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Fig. 8  Each of the data perturbations applied to the Lawrence, MA data. The center of the spatial distribution is marked by a black star. The light 
blue line represents the Merrimack River, which cuts through Lawrence
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Fig. 9  Choropleths of local Moran’s I for each perturbation. The global Moran’s I is listed underneath
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Fig. 10  The original data was centered at zero so each perturbation’s function shows the increased divergence from complete spatial randomness 
beyond the original data
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