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Abstract 

Background:  Human mobility is fundamental to understanding global issues in the health and social sciences such 
as disease spread and displacements from disasters and conflicts. Detailed mobility data across spatial and temporal 
scales are difficult to collect, however, with movements varying from short, repeated movements to work or school, 
to rare migratory movements across national borders. While typical sources of mobility data such as travel history sur-
veys and GPS tracker data can inform different typologies of movement, almost no source of readily obtainable data 
can address all types of movement at once.

Methods:  Here, we collect Google Location History (GLH) data and examine it as a novel source of information that 
could link fine scale mobility with rare, long distance and international trips, as it uniquely spans large temporal scales 
with high spatial granularity. These data are passively collected by Android smartphones, which reach increasingly 
broad audiences, becoming the most common operating system for accessing the Internet worldwide in 2017. We 
validate GLH data against GPS tracker data collected from Android users in the United Kingdom to assess the feasibil-
ity of using GLH data to inform human movement.

Results:  We find that GLH data span very long temporal periods (over a year on average in our sample), are spatially 
equivalent to GPS tracker data within 100 m, and capture more international movement than survey data. We also 
find GLH data avoid compliance concerns seen with GPS trackers and bias in self-reported travel, as GLH is passively 
collected. We discuss some settings where GLH data could provide novel insights, including infrastructure planning, 
infectious disease control, and response to catastrophic events, and discuss advantages and disadvantages of using 
GLH data to inform human mobility patterns.

Conclusions:  GLH data are a greatly underutilized and novel dataset for understanding human movement. While 
biases exist in populations with GLH data, Android phones are becoming the first and only device purchased to 
access the Internet and various web services in many middle and lower income settings, making these data increas-
ingly appropriate for a wide range of scientific questions.
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Background
Understanding human mobility and how it manifests 
across temporal and spatial scales is important across the 
health and social sciences [1], as mobility patterns drive 
important spatial processes from infrastructure and land 
use to infectious disease spread [2]. The health sciences 
have increasingly focused on human movement in recent 

decades, accounting for the importance of geographical 
context in driving health inequalities and exposure to 
environmental risks [3]. Geographical context is strongly 
linked to the critical concept of “neighbourhood” [3], or 
the spatial context of a given individual. Within the social 
sciences, this temporally dynamic concept of incorporat-
ing an individual’s experiences is foundational to inform-
ing how social inequalities persist through mechanisms 
such as racial segregation, how individuals are exposed 
to environmental hazards, and how accessibility varies 
to social and health resources [4]. Traditionally, studies 
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examining geographical context have used the charac-
teristics of the administrative unit that individuals reside 
within to quantify their exposure to risks or accessibil-
ity to various rather than an emergent understanding of 
exposure [3]. This ignores individual-level spatial and 
temporal variation in where people spend time [5], how-
ever, potentially smoothing over the unique mobility pat-
terns of marginalized populations and subgroups.

More recently, these issues have been addressed using 
the concept of an individual’s activity space (defined as 
encompassing all the locations a person interacts with 
over time) [6, 7], yielding a much more accurate picture 
of risk and social context than residence alone. Along 
these lines, recent studies have found that using place 
of residence rather than actual activity space underesti-
mated exposure to spatial risks by 16 and 7% in Vancou-
ver and Southern California respectively [8]. Further, 
using an individualized understanding of activity space 
can uncover sources of social patterns and inequalities 
that would not be observed using a static, administrative-
boundary-based understanding of neighbourhood, such 
as accessibility to healthcare services [9, 10], personal 
exposure to spatial risks [11], and social networks [12]. 
In particular, populations that are highly segregated will 
have strongly disparate activity spaces [13], which will 
cause geographically close groups of people to experience 
dramatically different realities.

Utilizing such activity-based approaches in the health 
and social sciences, however, requires a precise and 
broad understanding of geographical context and envi-
ronmental exposure across time [14]. Because locations 
for certain activities are often very close in space (for 
example, work and commercial activity), data used to 
inform activity space should be ideally be spatially refined 
enough to enable identification of different location types 
[14]. These data should also be temporally broad enough 
to capture regular behaviour patterns across long peri-
ods with sufficient certainty [14]. Though various disci-
plines have explored how activity spaces over weekly and 
monthly periods affect transit and exposure to frequently 
visited areas such as physical activity spaces, schools, 
workplaces, and otherwise [6], the extent of exposures 
experienced over a more broad timescale such as years 
and decades have been less explored. This owes partly 
to lacking data on long-term mobility patterns at suf-
ficient spatial resolutions, and remains a critical gap in 
our understanding of exposure to risks that lead to spatial 
outcomes such as cancer, obesity, and various inequali-
ties that arise from long-term differences in accessibility 
between populations.

With recent technological advancements, a number 
of data sources on human movement have been used 
to inform activity space across temporal scales [15, 16] 

(Fig. 1). Traditionally, travel diaries have been an invalu-
able source of mobility information to inform activity 
spaces [13], as respondents can identify the specific loca-
tions used for various activities, which can then be iden-
tified in the context of the respondent’s residence. While 
data from personal GPS trackers provide information on 
short-distance, circulatory movement and can directly 
inform activity spaces [17], census-derived and popula-
tion stock data inform longer-distance migratory move-
ment, and exposure over longer periods [18]. Other data 
inform mobility at intermediate spatial and temporal 
scales, such as remotely sensed night-time light data that 
help infer where people are within cities over the course 
of a year [16, 19, 20], or social media data, which record 
the location where various social media services are used 
[21]. In some countries, data from mobile phones (call 
data records, or CDRs) provide national-scale coverage, 
recording the cell tower that calls and texts are routed 
through and the associated times over months or years 
[11, 22].

These sources of mobility data can also be significantly 
biased or have other drawbacks. Travel diaries are labo-
rious to collect, for example, and subject to recall bias, 
especially when requesting the respondent to recall 
beyond several months [23]. Further, while CDRs have 
facilitated a national-level understanding of activity space 
and mobility, these data remain particularly difficult 
to obtain and use at present, however, requiring oner-
ous data-sharing agreements with mobile operators, are 
treated as proprietary due to privacy concerns, and are 
spatially coarse as towers can be many kilometres apart 
in rural areas, and cannot typically track international 
movement. Social media and CDR data collection can 
also be highly biased, only recording location when calls 
and texts occur, or when social media services are used, 
causing CDRs to underestimate total travel distance and 
movement entropy [24].

Because of these drawbacks in current data, and a 
broader need to understand activity spaces across tempo-
ral scales, novel data are needed that can be easily col-
lected with social and demographic information, cover 
long time periods, and identify locations of travel with 
high spatial precision. We explore here Google Location 
History (GLH) data as an underused source of human 
mobility information that could fill this niche in numer-
ous research contexts. These data consist of geographic 
coordinates routinely recorded by Android phones, and 
are associated with a consolidated user account, allow-
ing for location data that are recorded across all mobile 
devices that an individual has owned. GLH data have 
been collected in an opt-out, passive fashion for Android 
users since location services have been fully integrated 
into Android in 2012 [25]. Each user can quickly and 
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freely access their own data through a web browser. In 
studies that use GLH data, users can download their 
associated data and provide it to researchers during 
surveys that include an appropriate informed consent 
process. Because location is identified using a combi-
nation of the phone’s internal GPS and connected WiFi 
devices and cell towers, we show that these data are as 
spatially refined as GPS tracker data while spanning years 
(Fig.  1). Further, the passively-collected nature of GLH 
data avoids many known biases from compliance issues 
in studies that use GPS trackers, and avoids recall bias 
found in self-reported travel history data.

Though potentially biased towards wealthier popula-
tions, GLH data are available from an increasingly large 
proportion of the world, as the Android user base has 
increased dramatically since 2012 [26], reaching over 1.4 
billion active devices in 2015 [27]. In particular, these 
devices are popular as an affordable way to access the 
Internet in low and middle income settings [27], and 
worldwide, Android market share for accessing the Inter-
net has surpassed Microsoft Windows [26].

As they have only become recently available, GLH data 
have not previously been used to understand patterns 
of human mobility in social science research. Therefore, 
critical questions must be addressed before they can be 
used to examine important issues in the social sciences. 
Here, we conducted a pilot study among Android users 
in the United Kingdom to address: (1) what proportion 

of Android users have GLH data enabled, and whether 
this correlates with use of various Google services; (2) 
how much data are typically available for a given Android 
user; (3) whether GLH recording rates depended on cell 
signal, and (4) whether GLH location points are spatially 
accurate compared to established GPS tracking units. To 
address these questions, we collected GLH data among 
Android users and administered a survey addressing 
recent international movement, use of Google services, 
and technology use among individuals recruited through 
the University of Southampton in the United Kingdom. 
Among a subsample of these participants, we further 
validated the feasibility and accuracy of the GLH data 
by comparing GLH data to GPS data, and by correlating 
points recorded by the GPS and Android phone. Finally, 
we independently administered Google Surveys to 
Android users in several countries to address the propor-
tion of users that have GLH data across high and middle-
income countries.

Methods
Data collection
For the GLH and survey data collection, we recruited 
25 individuals throughout the University of Southamp-
ton (ethics approval ERGO ID 23647) from October to 
December 2016, targeting people who use an Android 
device as their primary mobile device. After adminis-
tering informed consent, participants were randomly 

Fig. 1  The information niche that Google Location History occupies. Adapted from [9]; left includes traditional mobility data, right includes mobility 
data available with more recent technologies. Google Location History data (yellow) record location points similarly to GPS trackers, while spanning 
timescales similar to mobile phone data, and cover a breadth of time spans and spatial scales not possible in other datasets
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assigned to one of two possible study groups: “GLH 
only” or “+GPS”. The “GLH only” group involved a single 
study visit where participants accessed and downloaded 
their GLH data and completed a self-administered sur-
vey. The survey included questions about phone model 
and Android version installed, past and present use of 
GLH and other Google services, opinions on data pri-
vacy, recent self-reported international travel, and health 
related questions. For those randomized to the “+GPS” 
group, the initial study visit consisted of the same pro-
cess, in addition to carrying a GPS logger unit (i-gotU 
model GT-600) for the following 7 days. Technical details 
and validation of the i-gotU GPS unit are outlined else-
where [28]. After one week, participants returned for 
a final study visit, where they returned the GPS logger 
unit and downloaded their GLH data again, providing 
GLH data for the 7  days corresponding to GPS tracker 
carriage. Study design is outlined in more detail in Addi-
tional file  1, including the GLH data download process 
and questionnaire.

We measured how much GPS and GLH data we 
obtained from each user, quantifying temporal and 
spatial extent of data and recording rates. We associ-
ated these measures with survey data to determine if 
data availability depended on technical details such as 
phone model and the version of Android installed. We 
also examined the correlation between data availability/
breadth and a user’s utilisation of various Google services 
and data privacy perceptions more generally.

Google surveys
To address the likelihood of Android users having GLH 
data across different countries, we administered online 
Google Surveys in Brazil, the USA, the UK, Japan, and 
Mexico to 250 Android users in each country (1250 
total). These surveys are administered to users through 
the Google Opinion Rewards app. This service provides 
nationally population-representative results to research-
ers using weights based on self-reported age and gender, 
and location based on browsing history and IP address. 
Further details on the Google Survey weighting meth-
odology can be found at https​://www.googl​e.com/analy​
tics/resou​rces/white​paper​-how-googl​e-surve​ys-works​
.html. In each of these surveys, we asked users if their 
Google account has GLH reporting enabled (“Yes”, “No”, 
or “Don’t Know”), instructing users that they are able to 
check under “Your Timeline” in the Google Maps app.

Comparison with common types of mobility data
To better contextualize the temporal breadth and resolu-
tion of GLH data, we performed a rapid literature review 
in PubMed using the following search terms in the title/
abstract: ‘human mobility’, ‘travel patterns’, ‘human 

movement’, ‘GPS tracker’, ‘Call Data Records’, ‘migra-
tion’, ‘population dynamics’ or ‘mobility networks’. This 
search resulted in 36,982 publications, which we fur-
ther restricted to studies on humans published within 
the past 10 years, resulting in 2203 articles. Papers were 
selected for inclusion if they met the following crite-
ria: (1) the study was published after 2008, (2) the study 
captured data on individual-level human mobility (i.e., 
social media check-ins, Call Data Records, GPS trackers, 
and travel history surveys), and (3) the study reported 
information on temporal resolution of analysis. We did 
not include review articles or studies modelling human 
movement using agent-based models or aggregate data, 
such as air traffic or commuter data. Some datasets had 
several associated articles (for example, CDRs provided 
for Senegal and the Ivory Coast through the D4D Chal-
lenge initiative); we therefore removed articles reporting 
on data previously included in the literature review. After 
reviewing article abstracts and methods, we identified 
a total of 43 suitable articles to include in our literature 
review [2, 6, 17, 22, 23, 28–65]. The table of studies used 
in this literature review is provided as Additional file 2.

Cell tower comparison
To determine whether GLH recording rates depended 
on cell coverage, we quantified the relationship between 
rate of GLH data recording and distance from the nearest 
cell tower using a generalized linear model, including a 
randomly varying individual-level intercept to control for 
individual-level differences in ping rate. We obtained cell 
tower locations from OpenCellID.org, which synthesizes 
cell tower locations inferred from various smartphone 
apps and donated by mobile operators to build a database 
on cell towers throughout the world. This database was 
used previously to map hospital catchment areas [66]. 
Because Android devices occasionally stopped record-
ing location history points for long periods, we restricted 
these analyses to points where the time between the 
last point collected was 1  week or less and to points 
within the United Kingdom, yielding a total sample size 
of 1,821,728 data points. We restricted the analysis to 
1  week or less to account for very long periods when 
users may have either disabled the internal GPS function-
ality on their phone, or switched to a phone without an 
internal GPS, removing 43 data points in total.

GPS validation
To validate whether the GLH data are as spatially accu-
rate and frequently-collected as established GPS tracker 
data, we compared ping rates between users with both 
GLH and GPS tracker data, distance between recorded 
location points, and other metrics to address whether 
the GLH data were accurate and representative of 

https://www.google.com/analytics/resources/whitepaper-how-google-surveys-works.html
https://www.google.com/analytics/resources/whitepaper-how-google-surveys-works.html
https://www.google.com/analytics/resources/whitepaper-how-google-surveys-works.html
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overall movement. Specifically, we calculated the dis-
tance between GPS and GLH points for all minutes 
where both GPS and GLH data were recorded. If multiple 
coordinates were recorded in a given minute, we assigned 
the mean latitude and longitude for that minute.

We also aggregated both datasets to gridded surfaces 
of varying resolution (ranging from grid squares of 
100 m by 100 m to 2500 m by 2500 m) and determined 
if GLH and GPS points were recorded within the same 
grid squares for each hour. We used gridded surfaces 
because researchers often combine location data with 
gridded spatial data that informs the risk of interest, 
such as malaria prevalence [67], healthcare accessibil-
ity [9], or air pollution [68]. We calculated percentage 
agreement for each hour by dividing the number of grid 
squares with points in both datasets by the total number 
of grid squares with points across both datasets. For each 
hour, if CGLH ∩ CGPS is the number of grid squares with 
points in both the GPS and GLH data and CGLH ∪ CGPS 
is the number of grid squares with points from either 
dataset, then the percent agreement a for that hour is 
a =

CGLH∩CGPS

CGLH∪CGPS
 . Therefore, if all the grid squares with 

GLH points also had GPS points and vice versa for a 
given hour, we recorded 100% agreement for that hour at 
that gridded surface resolution.

We repeated this analysis after interpolating linearly 
between points for minutes where no data were recorded. 
Linear interpolation is commonly used to fill in location 
information [69, 70], as GPS tracker data often have large 
gaps with no data recorded, particularly when the device 
is not moving, which we also observed in the GLH data.

We also determined if one dataset captured more travel 
than the other during the week that the GPS trackers were 
carried, by comparing the numbers of trips away from the 
previous night’s residence recorded in each dataset. We 
accomplished this by assigning a residence using the last 
location point from the GPS tracker data from the previ-
ous night. This assumes that the GPS trackers provided an 
accurate location for where that person spent the night, 
and we then calculated numbers of trips in the GPS and 
GLH data by counting the number of times people more 
than 100  m away from their daily assigned residence. 
Here, 100 m was chosen to define travel away from home 
due to the apparent accuracy of the GLH data compared 
to the GPS tracker data. We compared these using differ-
ent definitions of trips away from home, ranging from at 
least 10 min away from home to two hours.

Results
GLH data
Among the 25 participants in our pilot study, two individ-
uals reported that their GLH was disabled. A further two 

participants had no GLH data, suggesting they thought 
GLH recording was enabled, but was disabled in reality. 
This resulted in GLH data from a total of 21 participants, 
or approximately 85% of our sample. Among all partici-
pants, 20% (n = 5) reported that they had ever disabled 
GLH services, while a further 28% (n = 7) reported not 
knowing if they had ever disabled it. Among those who 
had previously disabled the service, two reported doing 
so for privacy reasons, two reported not feeling the need 
to enable it, and one reported disabling it to save bat-
tery life. Two participants further reported turning GLH 
services back on specifically to utilise the Google Maps 
feature.

Our sample included a variety of Android phone 
models, with a plurality (n = 9) of respondents owning 
a Samsung Galaxy device. Other models included Hua-
wei, Lenovo, Tecno, Infinix, Medion, Xiaomi, Asus, LG 
Nexus, Motorola, Blue Diamond, and OnePlus phones. 
The current Android operating system version on these 
phones varied between versions 4.4.2 through 7.0, and we 
found no significant difference in ping rate over the last 
three months of data collection with different Android 
versions or with different phone models (Additional 
file 3).

For the 21 participants with GLH data, we obtained a 
mean 205,000 location history points per user across an 
average of 367 days, yielding 4.32 million total geographic 
coordinates (Fig. 2). This often included days without any 
recorded data. On average, the beginning and end dates 
of location history points were 556  days apart, suggest-
ing that phones did not record data during roughly 1/3 
of days. This may be due to study participants not using 
an Android smartphone for the entire period, or due to 
study participants turning off location history collec-
tion or the GPS service on their smartphone. The actual 
proportion of days with no data ranged from 0% to 90% 
across the 21 users, which did not appear to correlate 
with Android version or phone model (Additional file 3) 
but did negatively correlate strongly with total number 
of points collected, suggesting no-data days were due to 
other factors.

We identified numerous occasions of international 
travel, with locations recorded in 41 different countries 
across the 21 individuals. In the questionnaire, we asked 
participants the last country they visited outside of the 
UK, and 17 users reported traveling internationally in the 
past year. After excluding very short periods recorded in 
other countries (less than one day), the GLH data accu-
rately captured the last visited country for 14 out of these 
17 users. We excluded travel to a country for less than 
one day, as that likely indicates stopovers and would not 
typically be counted as international travel. For the three 
cases where GLH data did not capture the last country 



Page 6 of 13Ruktanonchai et al. Int J Health Geogr  (2018) 17:28 

visited, two participants reported disabling data/GPS 
regularly.

Figure  3 shows GLH and GPS tracker data for a ran-
domly chosen subset of individuals from the +GPS 
group, and differences in data collected at various spatial 
scales between the GLH data and the GPS trackers. This 
figure also shows simulated mobile phone (CDR) data, 
assuming each GLH location point corresponded with a 
call or text event, and using the OpenCellID dataset to 
inform cell tower locations, yielding Voronoi polygons 
around cell towers roughly 242.8  m2 in size on aver-
age after isolating the OpenCellID dataset to the mobile 
operator with the most towers. As location point record-
ing occurred often every minute or more frequently 
during travel, this is likely a very large overestimation 
of call and text rates. Because CDR data generally only 
include calls and texts within networks that do not cross 
national borders, we excluded any international travel 
from the simulated CDR data. This figure also includes 
the countries reported as visited during the in-person 
questionnaire.

Notably, the GLH data recorded 41 international trips 
across 21 individuals (excluding countries where the 

person spent less than one day, to account for stopovers 
during travel), while the GPS data captured zero inter-
national trips for six individuals in the +GPS group due 
to the short duration covered, and the travel history data 
captured 18 international trips due to the questionnaire 
recording the most recent country visited in the past 
year. When comparing numbers of trips recorded during 
the week when the +GPS group carried GPS trackers, we 
found similar trips in both datasets regardless of the min-
imum amount of time away required to count a trip. Spe-
cifically, for the six individuals where we compared this 
analysis, if the minimum duration to qualify as a trip was 
10 min away from home, the mean number of trips iden-
tified was 10 (minimum 6, maximum 15) in the GPS data, 
and 10 (minimum 7, maximum 15) in the GLH data. If 
the duration was set to 120 min, the GPS data recorded 
7.2 trips (minimum 5, maximum 10), while the GLH data 
recorded 7.4 trips (minimum 4, maximum 10).

Google surveys
Among 1250 Android users, most countries had the high-
est proportion of users reporting having GLH reporting 
enabled, ranging from 43% in Japan to 72% in Mexico. 

Fig. 2  Aggregate GLH data (4.32 million points from June 2013 to December 2016) collected from study participants (n = 21). This map shows 
tracks across southern England
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In comparison, the proportion of users reporting having 
GLH reporting disabled (as measured by a ‘No’ response 
to the question) ranged from 5.6% in Brazil to 17.5% in 
the UK. Other users reported not knowing whether this 
feature is enabled, ranging from 20% in Mexico to 51% in 
Japan. Additional file 3 includes more detail on these sur-
vey results.

Comparison with common types of mobility data
Figure 4 visualizes the temporal resolution and duration 
of travel period by data type, with the GLH data collected 
during this study included. We found that generally, GPS 
tracker data captured trips at the highest temporal reso-
lution, while travel history surveys did not often capture 
shorter-term (less than 1  day) travel, and social media 

and call detail records enabled by new technologies had 
the longest travel periods recorded, frequently spanning 
many months or years. We also found that the GLH data 
fill a unique niche spanning travel periods of many years 
similar to CDRs, while also having high temporal resolu-
tion similar to GPS tracker data.

Cell tower comparison
We found a statistically significant positive relationship 
between time since the last GLH data point and distance 
from the nearest cell tower (p < .0001) in a generalized 
mixed model that included user ID as a random effect 
to account for individual-level differences in recording 
behaviour. In this model, we only included points where 
the time since the previous recording point was less than 

Fig. 3  Location information available at different spatial scales from the a GLH, b GPS, c simulated mobile phone data, and d survey data collected 
during this study. c Mobile phone data shown here were simulated using the GLH data, assuming each GLH location point was a call or text event 
routed through the nearest cell tower. In the simulated mobile phone data, polygons represent Voronoi polygons drawn around cell towers from 
the OpenCellID dataset, and are colored red if any simulated call/text events were routed through the associated tower
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1  week, to account for participants potentially using 
a phone without GPS functionality or disabling their 
Android phone’s internal GPS. Overall, GLH recording 
rate increased by 1 s for every additional 7.5 m from the 
nearest cell tower (regression coefficient .1325). This rela-
tionship appeared to be partly driven by high recording 
rates (every 30 s or less) less than 1 km from the nearest 
cell tower. When repeated using only points separated by 
30 s or more, this relationship became a non-significant 
positive trend between cell tower distance and ping rate 
(p = .2721). Additional file 3: Fig. S5 shows the relation-
ship between time since last recorded point and distance 
from the nearest cell tower in more detail.

GPS validation
To validate GLH data as compared to established meth-
ods such as GPS trackers, we quantified the spatial per-
cent agreement of GLH and GPS data points. In total, 
there were 1267 min where both GPS and GLH data were 
recorded. For these minutes, the GLH data were typically 
less than 100  m away from the GPS data in the corre-
sponding minute, with a median distance of 64 m sepa-
rating the GLH and GPS data.

We compared percentage agreement across varying 
grid cell sizes, which helps identify the spatial resolu-
tions at which GLH data are functionally equivalent to 
GPS tracker data. We found that the two datasets had 
roughly 85% agreement when using a gridded surface of 
cells that were 100 × 100 m. As expected, this percentage 
increased with larger grid cells (Fig. 5). The linearly inter-
polated data generally agreed less, with only 60% agree-
ment using a gridded surface of 100  m × 100  m cells. 
At 500 m × 500 m, the interpolated data began to agree 
similarly to the non-interpolated data, with roughly 85% 
agreement between the two datasets.

Two individuals in the GPS + group contained days 
both with and entirely without GLH data collection, 
critically allowing us to examine travel patterns on days 
without GLH data, thereby making inferences about 
whether these data are not collected as a function of 
movement. Importantly, the qualitative patterns as 
measured by the GPS tracker in days with and without 
GLH data did not appear to differ for these individuals. 
Specifically, the radius of gyration, a common aggregate 
measure of movement [2], was .586 decimal-degrees dur-
ing days without GLH data versus .677 during days with 
GLH data, suggesting that gaps in the GLH data may not 

Fig. 4  Temporal breadth and resolution of various data types, from studies found through a rapid literature review. The temporal breadth is the 
period of time over which travel was reported for that study, and the resolution is the greatest accuracy in mobility (i.e. for CDR and GPS data, the 
average frequency that location points were recorded, while for travel history surveys, the minimum trip duration for a trip to be recorded). GLH 
points (in blue) represent individuals in our study, to illustrate the range of breadth and resolution of the collected data
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depend on mobility, and are due to user behaviour or 
other non-mobility related factors.

Discussion
Our results suggest that GLH data could provide 
unmatched individualized human movement informa-
tion and address key gaps in currently-available data, 
including many trips over long periods of time while 
being spatially resolved (Fig.  3). These data are func-
tionally similar to GPS tracker data (Figs.  3, 4), but are 
easier to collect in a survey-based study than GPS data 
and less prone to participant usage issues, as they are 
passively collected and are easily retrieved by users. We 
collected these data in conjunction with a questionnaire 
that addressed self-reported international movement 
patterns, use of Android phones and various Google 
services, and provide our study materials for further use 
in Additional file  3. Other surveys may similarly collect 
broad demographic information to link with GLH move-
ment data, which currently represents an important gap 
in human mobility research.

We found that GLH data can provide mobility data 
over periods and at a resolution infeasible from other 
typical sources of movement information (Figs. 3, 4) [15, 
71], and were more temporally resolved and broad than 
data used in most recent studies (Fig.  4). We collected 
roughly two years of data on average from study partici-
pants, while studies using GPS trackers generally are only 
able to collect 1–2 weeks of location data at a time due 
to battery life issues [28]. Because the GLH data covered 

much longer periods, we were able to identify not only 
very short-distance, circulatory movements (top, Fig. 3a), 
but also numerous international trips (bottom, Fig.  3a). 
Furthermore, GLH data contain more fine-scale informa-
tion than CDR data, since CDR data only identify the cell 
tower used (top, Fig. 3c), and in this case, cell towers cov-
ered an area of 242.8 m2, suggesting lower accuracy than 
the GLH data. In reality, CDR data provide less location 
information than Fig. 3 implies, as calls and texts occur 
typically much less frequently than the GLH recording 
average of once per minute, and towers are typically less 
densely placed than in urban centers like Southampton. 
On larger spatial scales (bottom, Fig.  3), the GLH data 
recorded more information than could be reasonably 
expected to be collected through travel history surveys, 
collecting information on travel to up to countries, where 
travel history surveys are generally treated as unreliable 
after the first few recollected locations. Importantly, the 
GPS tracker data recorded no international mobility due 
to the short time span of data collection, and CDR data 
generally do not include international movement due 
roaming on cell networks in other countries.

The GLH data were as accurate and representative as 
GPS tracker data from the same period if aggregated to 
an appropriate temporal and spatial resolution, such as 
500 m or greater (Fig. 5; Additional file 3: Fig. S3). Even 
still, we found recorded GLH points were generally 
within 100  m of the corresponding recorded GPS data 
point, which is significantly better than the best-case 
scenario of 250  m found with the CDR data in South-
ampton (Fig. 3). Across a weeklong timescale, these data 
also generally strongly agreed both when interpolated 
between minutes and when non-interpolated on grids 
of 500 m × 500 m or coarser. These are conservative esti-
mates as they assume the GPS tracker data were perfectly 
accurate, where GPS tracker points are known to vary up 
to 20 m even when the GPS unit is stationary [28]. While 
we did observe gaps in GLH data collection, these gaps 
did not appear to correlate with movement in the two 
individuals where gaps occurred during GPS data col-
lection and therefore allowed for location tracking when 
no GLH points were recorded. GLH data collection did 
appear to correlate with distance from the nearest cell 
tower, but found that this source of bias can be mitigated 
by aggregating location points to each minute or longer.

Broad applications
Understanding how people move throughout their daily 
activities within the context of spatial risks will be impor-
tant for the health and social sciences, as this would ena-
ble a better understanding of the environmental drivers 
of chronic disease, socioeconomic inequalities, and other 
issues that involve long-term differences in exposure and 

Fig. 5  Agreement in grid cells visited in GLH and GPS datasets across 
7 individuals, for varying grid cell sizes. Only hours with both GPS 
and GLH data were used. Interpolated refers to linearly interpolating 
locations for minutes with no data
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mobility. GLH data could yield important insights into 
disparities in health, wealth, and wellbeing in settings 
where these analyses were previously impossible, such as 
in urban centres when considering risks associated with 
long-term exposure. Because these data are opt-out and 
are passively-collected as an Android user carries their 
smartphone, they will often include locational informa-
tion over longer periods than it is possible to obtain from 
other sources that collect data at a similar spatial resolu-
tion (Fig. 3). While wealthier urban populations tend to 
have better access to resources such as green spaces [72] 
and high quality food [73, 74], nearby poorer populations 
often experience worse social outcomes due in part to 
the effective inaccessibility of such resources, and use of 
these resources is best measured across long periods. In 
these settings, small distances separate populations that 
spend time in very different places, but GPS trackers gen-
erally cannot cover the periods needed. The high resolu-
tion of GLH data mean they are one of few viable sources 
of information for better understanding and mapping 
these differences towards mapping activity spaces and 
travel routes across long periods (Fig. 2, 4). These infer-
ences can assist infrastructure and intervention planning, 
as identifying routes used to access various social and 
health-oriented resources could identify the most impor-
tant routes for ensuring equitable infrastructure access 
[75]. By providing urban planners with better context on 
not only which infrastructure is most used, but which 
populations are using various resources, could help pro-
mote socially sustainable transport [76], and could help 
inform urban planning in the context of historically 
socially-isolated communities [77].

The directly collected nature of obtaining a user’s GLH 
data also means the data pair well with other useful infor-
mation such as demographics and health related out-
comes. As fine scale mobility can differ greatly between 
people based on income, gender, and other sociode-
mographic factors, survey data combined with GLH 
data could determine whether important travel pat-
terns depend on socioeconomic factors, to help target 
and account for vulnerable populations. Due to their 
uniquely identifiable nature, however, linking sociode-
mographic and health information with high resolution 
mobility data such as GLH raises important privacy con-
siderations, necessitating an ethical obligation to protect 
participant confidentiality. Confidentiality of sensitive 
geographic data has been similarly faced by household 
survey programmes such as the Demographic and Health 
Surveys (DHS) who release publicly available georefer-
enced data. Towards this, the DHS outlines common 
practices in ensuring participant confidentiality, using 
established techniques such as aggregate data disclosure 
and geographic masking techniques such as displacement 

[78]. By employing these measures, researchers may 
ensure the benefits of their study do not outweigh indi-
vidual risk of identification.

Limitations
Critically, GLH data can only be obtained by the user, 
necessitating a study design similar to typical survey-
based research and similar sample sizes. Future work 
could facilitate faster data collection, by providing an 
automated process for participants to easily view, down-
load and provide their GLH data to researchers. While 
this requirement increases the cost of studies that col-
lect GLH data, actively engaging participants during 
data download also permits simultaneous collection of 
other demographic or health related information, such as 
recent infection status of various diseases.

Though the active nature of data retrieval makes 
large sample sizes difficult to obtain, this makes GLH 
data complementary with CDRs where both are avail-
able. Where GLH data provide fine-scale and interna-
tional travel and can be collected with individual-level 
socioeconomic data, CDR data provide comprehensive 
travel patterns for all people across a country but do not 
include international movement or locations between 
call and text events. The two could be directly linked by 
recording phone numbers when collecting GLH data and 
linking individuals with their corresponding CDR data. 
In lieu of directly linked data, relationships between risk, 
socioeconomic status, location, and mobility in GLH data 
could help predict risk or socioeconomic characteristics 
for individuals in CDR data.

We enrolled study participants using non-represent-
ative recruitment methods, potentially biasing partici-
pants towards those more engaged with new smartphone 
technologies. This may therefore result in an overrepre-
sentation of GLH data than would be expected in other 
settings. Further, our study population is comprised 
of residents within the United Kingdom, which may be 
more likely to own smartphones and frequently use app-
based services such as Google Location History. We 
confirm that Android users are likely to have GLH data 
in a variety of countries using Google Surveys (Addi-
tional file 3: Fig. S1), but future work will need to better 
describe smartphone-owning populations and quantify 
how long various populations are likely to have owned 
smartphones in areas where GLH data may be collected.

Along these lines, GLH data are currently impossi-
ble to collect for many populations, as data collection 
requires that populations have Android smartphones, 
and have reliable mobile infrastructure and Internet con-
nection for data retrieval. While these data will likely not 
be relevant for some of the most vulnerable populations 
in low income settings, Android phone use is increasing 
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globally and becoming available to more people each year 
[21, 26]. In many middle income countries, Android has 
surpassed Windows and all other operating systems as 
the most common OS for accessing the Internet, and in 
many of these countries, people are opting to use mobile 
phone primarily as computing devices over desktop or 
laptop computers [26].

It is also possible that Android users do not have GLH 
data, most likely due to having GLH data reporting dis-
abled. In our Southampton sample and in our Google 
Survey results, we found that this likely does not affect 
data collection, as a majority of Android users reported 
having GLH reporting enabled in all countries but Japan 
in our Google Survey results. Across these surveys, typi-
cally 10% or less reported having GLH reporting disabled 
(Additional file  3: Fig S1). While 20–51% of respond-
ents did not know whether GLH reporting was enabled, 
because GLH reporting is opt-out, it is likely most of 
these users have it enabled.

Ultimately, GLH data are a greatly underutilized and 
novel dataset for understanding human movement, and 
for mapping activity spaces. While there is a strong bias 
in populations with GLH data to be wealthier than those 
without, Android phones are becoming the first and only 
device purchased to access the Internet and various web 
services in many middle and lower income settings, mak-
ing these data increasingly appropriate for a wide range 
of scientific questions.
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