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Abstract 

Background:  The provision of general practitioners (GPs) in Germany still relies mainly on the ratio of inhabitants to 
GPs at relatively large scales and barely accounts for an increased prevalence of chronic diseases among the elderly 
and socially underprivileged populations. Type 2 Diabetes Mellitus (T2DM) is one of the major cost-intensive diseases 
with high rates of potentially preventable complications. Provision of healthcare and access to preventive measures 
is necessary to reduce the burden of T2DM. However, current studies on the spatial variation of T2DM in Germany 
are mostly based on survey data, which do not only underestimate the true prevalence of T2DM, but are also only 
available on large spatial scales. The aim of this study is therefore to analyse the spatial distribution of T2DM at fine 
geographic scales and to assess location-specific risk factors based on data of the AOK health insurance.

Methods:  To display the spatial heterogeneity of T2DM, a bivariate, adaptive kernel density estimation (KDE) was 
applied. The spatial scan statistic (SaTScan) was used to detect areas of high risk. Global and local spatial regression 
models were then constructed to analyze socio-demographic risk factors of T2DM.

Results:  T2DM is especially concentrated in rural areas surrounding Berlin. The risk factors for T2DM consist of propor-
tions of 65–79 year olds, 80 + year olds, unemployment rate among the 55–65 year olds, proportion of employees 
covered by mandatory social security insurance, mean income tax, and proportion of non-married couples. However, 
the strength of the association between T2DM and the examined socio-demographic variables displayed strong 
regional variations.

Conclusion:  The prevalence of T2DM varies at the very local level. Analyzing point data on T2DM of northeastern 
Germany’s largest health insurance provider thus allows very detailed, location-specific knowledge about increased 
medical needs. Risk factors associated with T2DM depend largely on the place of residence of the respective person. 
Future allocation of GPs and current prevention strategies should therefore reflect the location-specific higher health-
care demand among the elderly and socially underprivileged populations.
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Background
The prevalence of chronic diseases and therefore the pro-
jectable utilization of healthcare depend strongly on the 
demographic and socio-economic composition of the 
respective population [1–3]. International studies suggest 
a strong relationship between the proportion of elderly, 
low socio-economic status and a higher prevalence of 
chronic diseases [2, 4–6]. However, planning of GPs in 
Germany still relies mainly on the ratio of inhabitants to 
GPs at fairly large scales [7] and does neither sufficiently 
reflect the location-specific higher prevalence of chronic 
diseases among the elderly and population groups with a 
lower socio-economic status, nor the accessibility of GPs 
in rural areas [8].

With the ongoing demographic transition and migra-
tion processes from rural to urban areas, the gap between 
demand and supply of health care is already widening in 
Germany. While the ageing of the population and there-
fore the prevalence of chronic diseases increases in rural 
areas, the availability of GPs decreases [9]. To meet the 
increased demand for healthcare especially in rural areas, 
it is important to identify locations with higher health-
care demand as spatially precise as possible. Additional 
knowledge about the population groups, which are most 
at risk in specific locations is necessary to effectively plan 
the future provision of GPs and immediate preventive 
measures where they are needed most.

Type 2 Diabetes Mellitus (T2DM) is a major public 
health threat with an increasing prevalence among the 
general population worldwide [4, 10, 11] and especially 
in Germany [3]. Prevention and access to healthcare are 
necessary not only to prevent a further increase but also 
to prevent severe complications such as lower-extremity 
amputation [12] or stroke [10].

Despite behavioral risk factors such as lack of physical 
exercise, dietary deficits and smoking [13], a wide range 
of studies additionally highlights an association between 
age, lower socioeconomic status and T2DM [4, 14–16].

Geographic information systems (GIS) and spatial 
regression models at the ecological level have gained 
increasing attention in recent years as this approach 
allows an analysis of possible risk factors that are often 
unavailable on an individual level due to privacy restric-
tion [15, 17]. For T2DM, this approach might help to 
identify the population groups, which are most in need 
for the provision of healthcare and access to preventive 
measures. However, several studies point out that socio-
demographic risk factors for T2DM, but also for a wide 
range of other diseases depend largely on the place of res-
idence of the respective individual [4, 14, 15, 17, 18]. As a 
consequence, a one-size fits all solution seems therefore 
inappropriate for effective public health strategies and 
allocation of healthcare [15].

Analyzing the spatial distribution of T2DM and asso-
ciated risk factors in Germany is challenging, as epide-
miological data on chronic diseases is seldom publicly 
available [19]. Only few studies have examined the spa-
tial distribution of T2DM in Germany [16, 20–23]. How-
ever, the majority of these studies are based upon data 
from Germany’s largest telephone survey of the Robert-
Koch-Institute (GEDA) [16, 20, 21]. A spatial analysis of 
this data source is therefore restricted to fairly large areas 
such as the counties in Germany [16, 21], or includes 
only a selection of municipalities [20]. Analyses based on 
surveys however, tend to underestimate the prevalence of 
T2DM as persons with a higher socioeconomic status are 
more likely to respond than persons with a lower socio-
economic status [20, 21]. Therefore, such surveys have 
only limited use for a demand-driven planning and allo-
cation of healthcare and prevention strategies.

Health insurance in Germany is generally mandatory 
and approximately 86% of the population are covered 
by one of the statutory health insurance providers, 10% 
are covered by private health insurance providers and 
the remaining 4% are covered by the state [24]. However, 
there are large socio-demographic differences between 
members of the various statutory health insurances [25]. 
As the provision and allocation of primary healthcare 
in Germany is planned and organized by the associa-
tion of statutory health insurance physicians in accord-
ance with the statutory health insurance providers [7], it 
is necessary for each health insurance provider to engage 
in planning of primary healthcare based on an empiri-
cal evaluation of the medical demand of their respective 
insurants.

At the federal level, 1671 inhabitants per 1 GP at the 
spatial scale of central areas (Mittelbereiche) of the Fed-
eral Agency of Building and Urban Development (BBSR) 
is the target-ratio for the allocation of GPs in Germany 
[7]. The association of statutory health insurance physi-
cians defines over- or undersupply as deviation from this 
ratio by 110 and 50%, respectively and has to undertake 
appropriate measures if over- or undersupply exists [7]. 
However, this ratio was established in the 1990s [7] and 
does not recognize an increased prevalence of T2DM 
and other chronic diseases in location-specific popula-
tion groups. The association of statutory health insurance 
physicians has reacted to this criticism by incorporat-
ing a demographic factor and allowing deviations from 
the established inhabitants to GP ratio for areas with 
increased medical demand in their revised planning 
guidelines [7]. However, due to the lack of reliable, small-
scale public health data on chronic diseases, an increased 
medical demand of a location-specific population group 
is still difficult to detect [16, 20–23]. To realistically cap-
ture such an increased demand for healthcare, more 
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reliable sources than survey data and spatial analyses at 
smaller scales are necessary than it is currently possible 
with survey data in Germany.

In this context, health insurance claims of the AOK 
Nordost have several advantages over survey data: (a) 
This data source represents a large sample of northeast-
ern Germany’s population, (b) can be analyzed on a fine 
geographic scale and (c) prevalence estimates of health 
insurance claims are not depending on the response rate 
of participants and are therefore a more realistic estimate 
of the “true” prevalence of chronic conditions than sur-
vey data [26]. Ultimately, a spatial analysis of this data 
source might provide new and inclusive insights on the 
spatial distribution of chronic diseases and population-
based risk factors.

The goal of our paper is therefore to (1) analyze the 
spatial distribution of T2DM based on health insurance 
claims of northeastern Germany’s largest statutory health 
insurance provider; (2) to evaluate possible risk fac-
tors using global ecological regression models and (3) to 
examine the spatially varying association between socio-
demographic risk factors and T2DM.

Methods
Dependent variable
In this study, we used data from northeastern Germany’s 
largest statutory health insurance provider (AOK Nor-
dost) for 2012, which covers roughly 1.79 million per-
sons (approximately one quarter of the population) of 
which 361 thousand persons are diagnosed with Type 2 
Diabetes.

Persons diagnosed with T2DM were defined in our 
study as having a confirmed diagnosis of T2DM (ICD-10: 
E11.-). As long as the insurant is treated for T2DM, this 
diagnosis will remain in the insurant’s personal medical 
file as the diagnosis is renewed with each GP visit associ-
ated with T2DM. To ensure that each insurant and dia-
betic is included only once in the analysis, the unique 
insurant number was used to exclude possible double 
entries within the database from the analysis.

The data was anonymized and was geocoded based 
on exact street-level data using the ESRI ArcGIS geoco-
der. The data included only age in broad age categories 
(0–5, 6–11, 12–17, 18–24, 25–44, 45–64, 65–79 and 80 
and older) and the address coordinates. We used a step-
wise geocoding process where the data was first geo-
coded based on the exact street address where possible 
(90.2%). Of the remaining data, 6.7% were matched to 
the centroids of the street and 3.1% were matched to the 
postal code centroids. The address coordinates for Berlin 
were obtained from the Senatsverwaltung für Stadtver-
waltung Berlin; the address coordinates for Brandenburg 
were obtained from the Landesvermessungsamt und 

Geobasisinformation Brandenburg (Geobasisdaten © 
GeoBasis-DE/LGB 2016, GB-D 13/16) and the coordi-
nates for Mecklenburg-Vorpommern were obtained from 
the Landesamt für Innere Verwaltung, Amt für Geoin-
formation, Vermessungs- und Katasterwesen (Geobasis-
daten © GeoBasis-DE/M-V 2016).

Explanatory variables
In this study, we assessed a wide range of demographic, 
socioeconomic and variables related to the physical envi-
ronment for their association with T2DM. Demographic 
variables were calculated based on the proportion of 
AOK insurants per demographic group. Socioeconomic 
variables included the proportion of unemployed per-
sons in different age groups, information on taxation, 
land use, household composition and a wide range of 
other indicators. Variables related to the physical envi-
ronment included the proportion of green spaces, recrea-
tional spaces and built surfaces. The data were obtained 
for the year 2012 from the INKAR database of the Fed-
eral Agency of Building and Urban Development (BBSR). 
Data on marital status, household and family composi-
tion were obtained from the census 2011 for Germany. 
All data were available on the spatial scale of the associa-
tion of municipalities. Additionally, we included data on 
the spatial distribution of GPs in our analysis to exam-
ine whether the availability of healthcare influences the 
prevalence of T2DM. We included two variables: The 
proportion of inhabitants to GPs and the average dis-
tance to GPs. The average distance to GPs was calculated 
based on the driving distance of each insurant to the 
closest GP and was then aggregated to match the asso-
ciation of municipalities. The street network dataset was 
downloaded from OpenStreetMap [27]. The association 
of municipalities in Germany was chosen as the unit of 
analysis as this is the smallest spatial scale, for which a 
wide range of indicators is available without areas being 
omitted due to privacy protection as it would be the case 
for municipalities. However, this scale does not allow an 
analysis of intra-urban differences as the indicators of 
BBSR are not available for a smaller administrative unit 
than the association of municipalities.

Statistical analysis
Bivariate kernel density estimation
In this study, we used a bivariate, adaptive kernel den-
sity estimation (KDE) to display the spatial heterogene-
ity of T2DM independent of administrative boundaries. 
In most epidemiological studies, disease and population 
data are only available for aggregated data such as postal 
codes, municipalities, counties or districts [10, 16, 21, 
28]. However, problems arise in the detection of local 
clusters and associations to socio-demographic exposure 
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factors due to the relatively arbitrary shape and quantity 
of spatial units, which is often referred to as the “modifi-
able area unit problem” [29]. This may be especially mis-
leading in rural areas where administrative boundaries 
are very large. As a consequence, a cartographic visu-
alization of disease risk without the restrictions of artifi-
cially created boundaries is favorable.

Bivariate kernel density estimation has been previously 
applied in small-scale studies for HIV [30, 31], cancer 
[32, 33], Alzheimer [34] and crime intensity [35] and thus 
seems useful for a small-scale analysis of T2DM as well.

A major concern when applying a bivariate KDE is the 
choice of bandwidth. If the bandwidth is too small, rates 
become highly unstable and spatial patterns are difficult 
to detect. If the bandwidth is too large, the map appears 
to be over smoothed and local extremes are smoothed 
away [33]. Although several statistical models exist to 
calculate the “optimal” bandwidth, such as the Likelihood 
Cross Validation [33, 36, 37], Least Squares Cross Valida-
tion [33, 38], Biased Cross Validation [33, 39], Smoothed 
Cross Validation [33, 40], or the direct plug-in method 
[33, 41], these aforementioned bandwidth selection mod-
els are generally only available for fixed bandwidth types 
[33].

As our study area comprises highly densely populated 
urban areas such as Berlin, Potsdam or Schwerin while 
at the same time comprising a large proportion of very 
sparsely populated rural areas, a KDE employing a fixed 
bandwidth would deliver no stable results. We therefore 
favored an adaptive bandwidth, which accounts for the 
varying population densities within our study area [32, 
33].

Although a wide range of selection methods exist for a 
fixed bandwidth, automated procedures to select an opti-
mal number of points to be included in an adaptive band-
width for a bivariate KDE are scarce and are not yet fully 
satisfactory [33]. As there are no definite recommenda-
tions to define a bandwidth for a bivariate KDE, we there-
fore visually evaluated several possible combinations of 
minimum sample points [42, 43]. Including at least 0.1% 
of T2DM cases and 0.1% of insurants delivered the most 
useful results. The T2DM prevalence was therefore cal-
culated as the ratio of at least 361 T2DM cases per km2 
to 1791 insurants per km2. Given the varying population 
densities, the kernel was thus smaller in highly populated 
areas and larger in sparsely populated rural areas. In this 
study, we used a Gaussian kernel as it tends to produce 
more robust results than a kernel type with a definite 
boundary [43].

The calculation of the bivariate KDE was carried out 
using the CrimeStat IV software [43]. The results were 
then imported in ESRI ArcGIS 10.3.

Sex‑ and age‑standardization of prevalence rates
The bivariate, adaptive kernel density estimation allows a 
visualization of T2DM prevalence without the limitations 
of administrative areas but has the disadvantage of not 
being able to incorporate sex- and age-standardization.

To further facilitate interpretation of the spatial vari-
ations in T2DM prevalence, we directly adjusted for 
sex and age using the WHO standard population from 
1976 [44] based on the five-digits postal codes of our 
study area. As the number of insurants between the five-
digits postal code varies considerably, we applied spa-
tial empirical Bayesian smoothing to borrow strength 
from neighboring postal codes to estimate more stable 
prevalence rates [45]. Neighboring areas were defined as 
postal codes sharing a common edge or boundary [46]. 
The computation was carried out in GeoDa 1.2.0 and the 
results were then imported in ESRI ArcGIS 10.3.

Cluster detection
The aim of cluster detection in our study was to evaluate 
whether a statistically significant elevated risk exists in 
certain areas. A purely visual inspection of the KDE and 
the adjusted rates would be misleading, as it is not possi-
ble to examine the number of cases behind the estimated 
rates alone. Applying a local cluster test on health data 
is important to prioritize areas for future public health 
interventions [30, 47] and has been previously shown 
useful to locate new clinics for chronically ill patients for 
diabetic kidney patients [48].

In this study, we used the spatial scan statistic (SaTS-
can). The spatial scan statistic is a local cluster test, which 
determines the location and significance of local clusters. 
This is achieved by a circular scanning window, which 
moves over the coordinates of the study area and evalu-
ates all possible cluster locations and cluster sizes up to 
either a user defined maximum or the default settings 
of including up to 50% of the population at risk inside a 
cluster [30, 49]. The statistical significance is calculated 
using 999 Monte-Carlo replications [50]. We applied a 
purely spatial Poisson model, where the T2DM cases per 
coordinate/sex- and age-adjusted number of T2DM cases 
per postal code were assigned as cases and all insurants 
per coordinate/postal code were assigned as population 
[30, 49, 50]. The maximum cluster size was restricted to 
a maximum radius of 10  km. This was done as (a) the 
standard setting of including up to 50% of the popula-
tion at risk often produces results of no practical use [51] 
and (b), we defined 10  km as the maximum reasonable 
driving distance to GPs in rural areas of northeastern 
Germany. For the analysis of the point data, we used the 
exact street-level coordinates and for the cluster analysis 
of the sex- and age-adjusted rates we used the centroid 
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coordinates of the postal codes. The analysis was carried 
out using SaTScan v9.4.2.

Spatial regression modelling
Ordinary least squares regression modelling
To create a meaningful and correct specified geographi-
cally weighted regression model (GWR), we first aimed 
to identify all possible explanatory variables through the 
global ordinary least squares (OLS) regression model. To 
achieve this, we first performed a natural log-transforma-
tion of the T2DM prevalence to satisfy the assumption 
of the OLS model that the dependent variable has to be 
normally distributed [52]. We used the raw rate instead 
of the age-adjusted T2DM prevalence as we specifically 
wanted to model the effect of older age groups on the 
T2DM prevalence.

We then compared the association between each 
potential explanatory variable and T2DM prevalence 
through univariate OLS regression models. As a large 
number of explanatory variables were found to be signifi-
cantly associated to T2DM, we used a data-mining tool 
called “exploratory regression” in ESRI ArcGIS 10.3 to 
determine all possible variable combinations. This tool is 
comparable to a step-wise regression. It evaluates all pos-
sible variable combinations based on four criteria: (1): the 
coefficients are statistically significant; (2): the explana-
tory variables are free from multicollinearity; (3): the 
residuals are normally distributed and (4): the residuals 
are not spatially autocorrelated [52–54].

We then determined overall model significance, auto-
correlation of the residuals, the presence of heteroscedas-
ticity and a wide range of other diagnostics by creating an 
OLS model in ESRI ArcGIS 10.3. with the same explana-
tory variables as suggested by the exploratory regression 
that were found to deliver a plausible explanation of the 
T2DM prevalence.

Geographically weighted regression modelling
The OLS model is a global model, it therefore esti-
mates only one single coefficient per explanatory vari-
able averaged over the entire study area. However, the 
socio-demographic composition of the population in 
northeastern Germany varies strongly at the local level. It 
is therefore unlikely that the association between socio-
demographic explanatory variables and T2DM is realis-
tically reflected by a global regression model. Previous 
studies applying GWR on Diabetes [4, 15] as well as on 
a wide range of other diseases [18, 55, 56] pointed out 
that the correlations between explanatory variables and 
T2DM vary strongly across space. We therefore hypoth-
esize that this applies to our study area as well. The GWR 
methodology is an extension to the standard regression 
models and estimates a wide range of local parameters to 

reflect changes over space in the association between an 
epidemiological outcome and explanatory variables [57].

Similar to the OLS model, we used the log-transformed 
T2DM prevalence as the dependent variable with the 
same explanatory variables that were found to be signifi-
cant in the OLS model.

We used the centroids of the association of municipali-
ties as the input coordinates. Similarly to the KDE, the 
GWR methodology uses a circular kernel to calculate 
the local estimates. The GWR model fits for each coor-
dinate a regression equation where the coordinates in the 
center of the kernel are the regression points. The data 
points inside the kernel are then weighted with decreas-
ing weights from the center towards the edge of the ker-
nel. The bandwidth of the kernel can be either fixed or 
adaptive and the shape of the kernel can follow a Gauss-
ian or a bi-square distribution. The optimization of the 
bandwidth can be based on one of the four available cri-
teria: (1) Akaikes Information Criterion (AIC); (2) Akai-
kes corrected Information Criterion (AICc); (3) Bayesian 
Information Criterion (BIC) and (4) Cross Validation 
(CV) [57, 58]. We thus evaluated all 14 possible combi-
nations of kernel shape, bandwidth type and bandwidth 
optimization method. The models without clustered 
residuals were further considered and out of those, the 
model with the lowest AICc value and highest adjusted 
R2 was then chosen as the final model. The calculation of 
the GWR model was carried out in the GWR4 software. 
To enhance visualization of the spatially varying coeffi-
cients, we used the software’s “prediction at non-sample 
points” function and calculated the predicted values for 
a grid of northeastern Germany based on a cell size of 
100 m × 100 m. The obtained values were then interpo-
lated using ordinary kriging in ESRI ArcGIS 10.3.

Ethics statement
The data and results used in this study were anonymized 
and do not contain any personal information. The use of 
anonymized data for research purposes does not require 
a vote by an ethics committee or an institutional research 
board.

Results
Spatial distribution of T2DM
The overall raw prevalence of T2DM was 20.0% and 
the sex- and age-adjusted prevalence was 14.2%. How-
ever, the prevalence varied widely within the study area 
(Fig.  1). Generally, the prevalence was relatively low in 
the center of larger villages or urban areas and increased 
towards remote, rural areas. The highest prevalence and 
clusters with most cases could be observed in a ring in 
Brandenburg, surrounding Berlin. In Mecklenburg-
Vorpommern, the number of clusters as well as the 
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number of cases inside local clusters was lower than in 
Brandenburg.

Socio‑demographic risk factors of T2DM
Six variables were identified as significant predictors for 
T2DM in northeastern Germany (Table  1): (1) propor-
tion of persons aged 65–79, (2) proportion of persons 
aged 80 and older, (3) proportion of unemployed persons 
aged 55–65; (4) proportion of employed persons which 
are subject to social insurance contribution, (5) mean 
income tax and (6) proportion of non-married couples, 
which live together in the same household. These six vari-
ables explained 44% of the variation in T2DM prevalence 
(Table 1). However, the residuals were clustered, reflect-
ing that a global OLS model is not suitable to model the 
prevalence of T2DM.

Spatially‑varying risk factors of T2DM
By comparing all 14 possible combinations of bandwidth 
type, kernel shape and optimization methods in terms of 
their AICc value, adjusted R2 and Moran’s I of the residu-
als (Table  2), the model using an adaptive bandwidth 
with a bi-square kernel shape and an AIC optimized 

bandwidth selection method fulfils the requirements 
of the residuals not being clustered and has the best 
model fit, both, in terms of the AICc value and adjusted 
R2. This model explains 66% of the spatial variations of 
T2DM prevalence and has a much better fit (AICc: 
−374) than the global OLS model (AICc: −313). This 
suggests that a local model is more suitable to model the 

Fig. 1  The spatial distribution of T2DM in northeastern Germany represented as a KDE estimates of the raw rate and b sex- and age-adjusted rates 
based on the five-digit postal codes

Table 1  Results of the global OLS regression model

Significance levels: * ≤ 0.05; ** ≤ 0.01; *** ≤ 0.001

Variable Coefficient VIF

Intercept 2.259540***

Persons aged 65–79 (%) 0.027251*** 1.656689

Persons aged 80 and older (%) 0.010704** 1.650654

Unemployed persons aged 55–65 (%) 0.013354*** 2.593295

Employed persons (%) −0.006181** 1.602619

Mean income tax 0.000780** 2.272369

Non-married couples (%) 0.014524* 1.452730

Adjusted R2 0.44

AICc −313

Global Moran’s I of residuals I = 0.264 (p < 0.001)
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socio-demographic risk factors for T2DM than a global 
model.

The cartographic visualization of the GWR regression 
coefficients revealed strong regional differences of the 
association between the examined socio-demographic 
variables and T2DM prevalence (Fig. 2).

The impact of proportion of persons aged 65–79 was 
strongest in the areas north of Berlin in Brandenburg 
and two districts in the western part of Mecklenburg-
Vorpommern. In these areas, 1% increase in persons aged 
65–79 will increase the prevalence of T2DM between 3.2 
and 5.4%. The association between persons aged 65–79 
and T2DM prevalence was not significant in several 
districts west of Berlin and the northeastern districts in 
Mecklenburg-Vorpommern.

The association to proportion of persons aged 80 and 
older was significant in those areas where persons aged 
65–79 were not significant with the exception of the 
islands Rügen and Usedom. The strongest impact could 
be observed in parts of the districts Vorpommern-Greif-
swald, Mecklenburgische Seenplatte and Prignitz. In 
these areas, 1% increase in persons aged 80 and older will 
increase the T2DM prevalence between 2.3 and 4%.

Unemployment rate among persons aged 55–65 was a 
significant positive predictor in several districts north of 
Berlin in Brandenburg and Mecklenburg-Vorpommern. 
In these areas, 1% increase in unemployment among the 
55–65  year olds will increase the prevalence of T2DM 
between 3.8 and 6.6%. A significant negative associa-
tion could only be observed in a small part of the dis-
tricts Oder-Spree and Dahme-Spreewald. 1% decrease of 
unemployment among the 55–65 year olds will increase 
the T2DM prevalence between 1.3 and 6.4%.

The association between proportion of employed per-
sons, which are subject to social insurance contribution, 
and T2DM changed sign across the study area. In the 
areas, where the proportion of employed persons was 
significant positively associated, 1% increase in employed 
persons was associated with 1.5–3.5% increase in 
T2DM prevalence. In the areas where the proportion of 
employed persons was significant negatively associated, 
1% decrease of employed persons was associated with 
a 0.5–3.2% increase in T2DM prevalence. However, the 
association between employed persons and T2DM was 
only significant in a fraction of areas.

Similar to proportion of employed persons, the associ-
ation between mean income tax and T2DM changed sign 
across the study area. In several districts north of Berlin, 
where the association between income tax and T2DM 
prevalence was positive, 10 Euro income tax per person 
per year will increase the T2DM prevalence by 0.1–3.2%. 
In the areas where the association to income tax was sig-
nificant negative, 10 Euro less income tax per person per 
year will increase the T2DM prevalence between 1.6 and 
3%.

The proportion of non-married couples sharing a com-
mon flat was only significant in several small parts of the 
districts Dahme-Spreewald and Teltow-Fläming. In these 
areas, 1% increase in non-married couples will increase 
the T2DM prevalence between 2.2 and 6.3%.

Discussion
The prevalence of T2DM varies strongly at the very local 
level and clusters especially in rural areas in Brandenburg 
and Mecklenburg-Vorpommern. Socio-demographic risk 
factors consisted of proportion of persons aged 65–79, 
proportion of persons aged 80 and older, unemployment 
rate among the 55–65 year olds, proportion of employed 
persons, which are subject to social insurance contribu-
tion, mean income tax and proportion of non-married 
couples sharing a common flat. However, all associations 
displayed strong regional differences.

The overall prevalence of T2DM was 20%. After adjust-
ing for sex and age, the prevalence of 14.2% was still 
higher than national estimates based on data derived 
from the telephone survey of the Robert-Koch-Institute 
(GEDA), which estimated the prevalence of known Dia-
betes to be at 8.8% among adults in Germany [3]. How-
ever, estimates derived from surveys such as the GEDA 
study are rather underestimated as healthy participants 
are more likely to respond than chronically ill patients [20, 
21]. In this study, the estimated prevalence exceeds these 
previous estimates by far. As our study area comprises the 
most deprived areas in Germany [28], it is not surprising 
that our estimates exceed those of the GEDA study. Addi-
tionally, the proportion of older inhabitants, persons with 

Table 2  Comparison of  bandwidth types, kernel shapes 
and bandwidth optimization methods

Modell (bandwidth type, kernel 
shape, optimization method)

AICc Adjusted R2 Moran’s I  
of residuals

Adaptive, Gaussian, AICc −347 0.51 p < 0.001

Adaptive, Gaussian, AIC −347 0.51 p < 0.001

Adaptive, Gaussian, BIC −315 0.44 p < 0.001

Adaptive, Gaussian, CV −347 0.51 p < 0.001

Fixed, Gaussian, AICc −385 0.62 p < 0.05

Fixed, Gaussian, AIC −265 0.66 p > 0.05

Fixed, Gaussian, BIC −316 0.44 p < 0.001

Fixed, Gaussian, CV −370 0.64 p > 0.05

Adaptive, bi-square, AICc −394 0.63 p < 0.001

Adaptive, bi-square, AIC −374 0.66 p > 0.05

Adaptive, bi-square, BIC −320 0.45 p < 0.001

Fixed, bi-square, AICc −385 0.62 p < 0.01

Fixed, bi-square, AIC 40 0.68 p > 0.05

Fixed, bi-square, BIC −316 0.44 p < 0.001
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low levels of education and unemployed persons among 
the local AOK health insurances is generally higher than 
in other statutory health insurances. As a logical conse-
quence, the prevalence of chronic diseases is higher in our 
population sample than in the rest of the population [25].

The spatial distribution of T2DM varied strongly and 
formed clusters on small geographic scales. This was 
reflected by the results of the bivariate kernel density 
estimation and the results of the spatial scan statistic. 
Spatial heterogeneity and local clustering is typical for a 
wide range of chronic diseases [12, 59–62]. Our results 
are therefore in line with other studies but add an impor-
tant level of spatial detail to previous research. The 
combination of the bivariate KDE and the spatial scan 
statistic complimented each other fairly well using the 
settings chosen in this study. However, we had to use a 
very conservative p value for the cluster analysis, as the 
number of clusters using a p-value of 0.05 was simply too 
high to allow a detailed investigation.

We identified six risk factors for T2DM in northeast-
ern Germany: (1) proportion of persons aged 65–79, (2) 

proportion of persons aged 80 and older, (3) propor-
tion of unemployed persons aged 55–65; (4) proportion 
of employed persons which are subject to social insur-
ance contribution, (5) income tax and (6) proportion of 
non-married couples, which live together in the same 
household.

The association of T2DM to older age groups was 
expected as T2DM displays a strong association to older 
age groups [3, 4, 22]. The association of T2DM to the pro-
portion of persons aged 65–79 and persons aged 80 and 
older is therefore in line with these studies although these 
associations were not in the entire study area significant.

Several studies pointed out that T2DM is associated 
with a lower socio-economic status [4, 14–16]. This is 
reflected by the strong association of unemployed per-
sons aged 55–65 to T2DM. Given the high proportion 
of older persons among the AOK insurants, it is not sur-
prising that specifically the unemployment rate among 
persons aged 55–65 was significant, but not unemploy-
ment rate in general. Additionally, this reflects the value 
of stratified socio-economic data as these findings could 

Fig. 2  GWR correlation coefficients of type 2 diabetes mellitus for a persons aged 65–79, b persons aged 80 and older, c unemployed persons 
aged 55–65, d employed persons, e mean income tax and f non-married couples



Page 9 of 12Kauhl et al. Int J Health Geogr  (2016) 15:38 

allow a more targeted prevention strategy among the at-
risk population group.

The association to employed persons, which are sub-
ject to social insurance contribution, has to be seen in the 
context of income tax. Employed persons were positively 
associated in the areas, where income tax was negatively 
(but not significant) associated with T2DM prevalence. 
This reflects the association of T2DM to the lower-
income groups [4, 15] and thus highlights the importance 
of determining location-specific association for T2DM. 
The negative association of employed persons to T2DM 
in specific areas can in part be explained by the exclu-
sion criteria of employed persons in Germany. Excluded 
under this definition are for example persons working in 
marginal employment, soldiers, self-employed persons, 
non-working family members and government officials 
[63]. Given the association of T2DM to lower socio-eco-
nomic status, these results might indicate that in areas 
where the association to employed persons is negative, 
persons working in marginally employment and non-
working family members are at major risk for T2DM.

Although income tax was overall positively associated 
to T2DM, the results of GWR point out that income tax 
was in several areas significant negatively associated, 
confirming the results of previous studies [4, 15]. The 
positive association of income tax to T2DM prevalence 
is very specific to the area surrounding Berlin, which is 
often referred to as the commuter belt. This positive 
association reflects that in specific areas, a higher income 
may pose a risk factor for T2DM as well.

Several studies have shown that marital status has an 
effect on the overall health of the population. An unmar-
ried status is often associated with a higher prevalence of 
chronic diseases and premature death [64], although not 
all studies can confirm this association [65]. The posi-
tive association of non-married couples sharing a com-
mon flat to T2DM can therefore be considered as very 
specific to the commuting belt around Berlin. Further 
research on an individual level is necessary to confirm 
this association.

Although several studies found an association between 
land-use, built environment and obesity and T2DM [66, 
67], we found only a very moderate association between 
the proportion of built surfaces and T2DM. After care-
fully reviewing the results of a GWR model including the 
proportion of built surfaces as independent variable, we 
concluded that this association was misleading in our 
study area as it was only significant in the most sparsely 
populated area in Brandenburg. This seems implausible 
as villages in this area are generally very small and green 
spaces are widely available and accessible in walking dis-
tance. We thus excluded the proportion of built areas 
as independent variable from our analysis. However, 

this highlights the value of local regression models over 
global regression models to question the plausibility of 
possible associations.

We found no associations between availability of GPs 
and the prevalence of T2DM. Thus, access to and avail-
ability of GPs has no influence on the diagnosis of T2DM 
in our study area. Since the majority of T2DM is detected 
among persons in their 40 s and older [68], and diabetics 
in rural areas consulting GPs less frequently than diabet-
ics in urban areas [69], it seems reasonable to assume that 
a substantial amount of diabetics in our study area only 
sought medical attention when symptoms of T2DM per-
sisted as our population sample is older than the rest of 
northeastern Germany’s population. As a consequence, 
the number of undiagnosed diabetics in rural areas is 
potentially higher among middle-aged persons, which do 
not display any symptoms yet.

Strengths and limitations
Strengths
In this study, we used a large database, consisting of 1.8 
million insurants. Our results clearly demonstrate that a 
spatial analysis using “big data” of health insurance pro-
viders is feasible and can be used to provide a finer spatial 
resolution for prevalence estimates of T2DM than it is 
currently possible with survey data.

Several spatial-epidemiological studies highlight the 
benefits of performing a cluster test based on point data 
over administrative data [30, 70, 71]. Detailed cluster 
detection based on point data could not only enhance 
prevention strategies [17, 30] but could also be used for 
a demand-driven allocation of healthcare facilities where 
they are needed most [48]. In northeastern Germany, 
this is of particular importance as the population is very 
unevenly distributed and the smallest administrative 
unit–municipalities–vary strongly in size and population 
among the states [72]. Further, Germany’s largest city 
Berlin counts as only one municipality. Five-digit postal 
codes were thus used for the sex- and age standardization 
to highlight intra-urban differences. German postal codes 
have the disadvantage of - specifically in predominantly 
rural regions - covering very large areas and are thus not 
very suitable for the allocation of future healthcare. As a 
consequence, our approach of combining a bivariate KDE 
with a cluster analysis may serve as an alternative and rel-
ative exact prioritization for allocating new GP resources 
in the near future.

Limitations
First, our study was based on health insurance claims 
of northeastern Germany’s largest statutory health 
insurance provider. Although the AOK Nordost covers 
approximately one quarter of the population, the results 
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cannot be assumed to sufficiently reflect the prevalence 
of T2DM for the whole population. Large socio-demo-
graphic differences exist between the insurants of the 
various statutory health insurance providers with the 
AOK having the largest proportion of persons with low 
income, low educational level and thus the highest preva-
lence of chronic diseases [25].

Second, we included all persons that were insured in 
2012 with the AOK Nordost, irrespective of the length 
of insurance. We therefore did not exclude persons who 
died in 2012 from the analysis or persons being insured 
for short time-periods as these persons still contributed 
to the overall prevalence of T2DM.

Third, it is clear that the results of the bivariate KDE 
for T2DM represent the demographic distribution of 
insurants to a certain extent, given the strong association 
of T2DM to older age groups [3, 4, 22]. However, age-
standardization is currently not available for a bivariate 
KDE in the CrimeStat IV software. As a consequence, 
the combined results of the bivariate KDE and the spatial 
scan statistic are more relevant for immediate allocation 
of GPs than for long-term planning of future healthcare.

Fourth, although most clusters were concentrated in 
areas with above-average prevalence estimates of the 
KDE, a small proportion of clusters was also concen-
trated in areas with below-average prevalence estimates. 
This is attributable to the different settings used in this 
study for the bivariate KDE and the spatial scan statistic. 
As we used an adaptive kernel for the KDE and a fixed 
radius of 10 km for the spatial scan statistic, higher prev-
alences cannot be sufficiently visualized if several hun-
dred cases are concentrated in a very small location. This 
may occur for example with adjacent multi-story apart-
ment blocks, which still constitute a significant cluster 
as detected by the spatial scan statistic but are smaller 
than the resolution offered by the KDE. When using 
fixed bandwidths of the same size for KDE and the spatial 
scan statistic simultaneously, this problem becomes less 
prominent [30].

Fifth, the associations examined in this study are based 
on aggregated data. Although our results generally reflect 
the results of other spatial-epidemiological studies on 
T2DM, it is necessary to review whether the associations 
revealed in this study at the ecological level are also valid 
associations on an individual level.

Implications for future planning of healthcare
Our results clearly demonstrate that the prevalence of 
T2DM varies at very fine geographic scales. The small-
scale spatial variability of T2DM thus challenges the 
applicability of the spatial scale of central areas (Mit-
telbereiche) at which the allocation of GPs is currently 
planned [7, 73]. Based on our results, a planning on 

smaller scales such as the association of municipali-
ties would be more suitable to reflect the strong spatial 
variability of T2DM. It has been argued that the current 
provision of GPs–based on the ratio of 1 GP per 1671 
inhabitants [7]—is too simplified and also outdated [8, 
74]. The association of T2DM to location-specific socio-
demographic population characteristics demands a 
strong deviation from these ratios and calls for a stronger 
acknowledgement of increased medical needs among 
the elderly and socially underprivileged populations. The 
revised planning guidelines of the federal association of 
statutory physicians in 2013 would allow deviations from 
the current ratio for areas with a particular high preva-
lence of diseases or specific socio-economic character-
istics [75]. However, these revised planning guidelines 
still remain unspecific on how exactly a particular high 
prevalence or specific socio-economic characteristics can 
be translated into additional GP positions for a particu-
lar area. As a consequence, our analysis can only point 
out areas with a currently high medical demand and 
location-specific associations between T2DM and socio-
demographic population characteristics.

Given that the spatial variability of T2DM is not only 
determined by current socio-demographic factors but 
also by the change of these factors over time [4], the 
results of our GWR analysis could serve as a first basis in 
developing approaches to model the expected, long-term 
future burden of T2DM to assist in allocating future GPs 
where they will be needed most.

Conclusion
This is to date the largest small-scale spatial-epidemio-
logical study of T2DM in northeastern Germany. Our 
results clearly show that T2DM varies at the very local 
level and that a large variation of T2DM prevalence can 
be explained by location-specific, socio-demographic 
population characteristics. Future planning of healthcare 
would greatly benefit from smaller spatial scales and need 
to deviate from simple inhabitants to GP ratios to reflect 
the increased prevalence of chronic diseases in older and 
socially underprivileged population groups. These results 
are therefore valuable for the future planning of health-
care in northeastern Germany. Our approach of analyz-
ing the spatial distribution of chronic diseases at the very 
local level and geographically weighted regression is not 
only useful for northeastern Germany, but could be an 
effective way of targeting location-specific population 
groups with increased medical needs as precisely as possi-
ble in all countries, where chronic diseases are on the rise.
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