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Abstract 

Background African trypanosomiasis is a tsetse-borne parasitic infection that affects humans, wildlife, 
and domesticated animals. Tsetse flies are endemic to much of Sub-Saharan Africa and a spatial and temporal 
understanding of tsetse habitat can aid surveillance and support disease risk management. Problematically, current 
fine spatial resolution remote sensing data are delivered with a temporal lag and are relatively coarse temporal 
resolution (e.g., 16 days), which results in disease control models often targeting incorrect places. The goal of this 
study was to devise a heuristic for identifying tsetse habitat (at a fine spatial resolution) into the future and in the 
temporal gaps where remote sensing and proximal data fail to supply information.

Methods This paper introduces a generalizable and scalable open-access version of the tsetse ecological distribution 
(TED) model used to predict tsetse distributions across space and time, and contributes a geospatial Bayesian 
Maximum Entropy (BME) prediction model trained by TED output data to forecast where, herein the Morsitans group 
of tsetse, persist in Kenya, a method that mitigates the temporal lag problem. This model facilitates identification 
of tsetse habitat and provides critical information to control tsetse, mitigate the impact of trypanosomiasis 
on vulnerable human and animal populations, and guide disease minimization in places with ephemeral tsetse. 
Moreover, this BME analysis is one of the first to utilize cluster and parallel computing along with a Monte Carlo 
analysis to optimize BME computations. This allows for the analysis of an exceptionally large dataset (over 2 billion 
data points) at a finer resolution and larger spatiotemporal scale than what had previously been possible.

Results Under the most conservative assessment for Kenya, the BME kriging analysis showed an overall prediction 
accuracy of 74.8% (limited to the maximum suitability extent). In predicting tsetse distribution outcomes for the entire 
country the BME kriging analysis was 97% accurate in its forecasts.

Conclusions This work offers a solution to the persistent temporal data gap in accurate and spatially precise rainfall 
predictions and the delayed processing of remotely sensed data collectively in the − 45 days past to + 180 days 
future temporal window. As is shown here, the BME model is a reliable alternative for forecasting future tsetse 
distributions to allow preplanning for tsetse control. Furthermore, this model provides guidance on disease control 
that would otherwise not be available. These ‘big data’ BME methods are particularly useful for large domain studies. 
Considering that past BME studies required reduction of the spatiotemporal grid to facilitate analysis. Both the GEE-
TED and the BME libraries have been made open source to enable reproducibility and offer continual updates 
into the future as new remotely sensed data become available.
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Background
Tsetse and African trypanosomiasis
Trypanosomiasis is a debilitating and potentially fatal dis-
ease to humans and domestic animals presenting signifi-
cant health and economic challenges across 37 countries 
of sub-Saharan Africa [1]. Trypanosomes transmitted 
by the bite of the tsetse fly (genus Glossina) [2] cause 
African Animal Trypanosomiasis (AAT), also known as 
Nagana, and Human African Trypanosomiasis (HAT), 
also known as sleeping sickness. Tsetse flies are K-strat-
egists, with long life expectancy (average of 90 days per 
female) and high survival rates (> 90% daily survivorship 
in adults), combined with low reproduction rates of one 
live pupa deposited in a suitable soil every 6 to 9 days [3]. 
Both animals and humans contribute to Trypanosoma 
genetic exchange [4, 5]. The tsetse fly carries the parasites 
to different animal hosts, allowing cyclical transmission, 
but the primary animal reservoirs are wild ungulates and 
domestic cattle. Methods to control the tsetse fly include 
the use of traps, targets [6–8], and less commonly pyre-
throid-treated cattle [9].

In Kenya, eight species of tsetse fly occupy diverse 
habitats in spatially discontiguous “fly belts” that reflect 
common climatological, edaphic, and landscape char-
acteristics disjoint by unsuitable habitat [10, 11]. While 
tsetse flies are classified into a single genus, Glossina, 
there are three extant subgenera organized according to 
species physiology and habitat preferences: Morsitans, 
Palpalis, and Fusca which are generally restricted to 
savannah, riverine, and forested habitats, respectively. It 
is estimated that 38 of 47 counties in Kenya are affected 
by tsetse flies [12], with the Morsitans group being the 
most widely distributed across the country [36]. Multiple 
tsetse fly species can coexist in the same area, sometimes 
making it difficult to quickly identify any single causative 
agent in human or animal epidemics [5], and the within 
belt spatial and temporal distributions can vary signifi-
cantly [13, 14].

There are three major Trypanosoma species that 
cause AAT in cattle throughout Kenya: Trypanosoma 
congolense (subgenus Nannomonas), T. vivax (subge-
nus Duttonella), and T. brucei subspecies brucei (subge-
nus Trypanozoon), and T. simiae [15]; human infection 
of AAT is rare [16]. AAT is associated with substantial 
economic losses, primarily by constraining the livestock 
industry [1, 15–20] through high costs of veterinary care, 
lower calving rates and milk yields, and higher rates of 
calf mortality [21]. Economic losses from AAT to cattle 
production across sub-Saharan Africa are estimated at 
US$ 1.0–1.2 billion; annual agricultural Gross Domestic 
Product (GDP) losses are US$4.75 billion [22]. Losses 
from AAT in Kenya are estimated at US$ 200 million 
[12] and disproportionately affect impoverished livestock 

farmers. While notable progress has been made to com-
bat AAT infection, it continues to be a major obstacle to 
improved livestock productivity throughout sub-Saharan 
Africa [15, 23].

There are two distinct parasites that cause HAT: Trypa-
nosoma brucei gambiense (gHAT) is responsible for the 
Gambian form of the disease in 24 countries in Central 
and West Africa, and T. b. rhodesiense (rHAT) is respon-
sible for the Rhodesian form found in 13 countries in 
East and Southern Africa. The gHAT form is responsi-
ble for 98% of infections [24]. Beyond direct health out-
comes, HAT has considerable socio-economic impacts 
including declines in agricultural productivity from dis-
ruption to daily activity, food insecurity both from reduc-
tion of agricultural productivity and availability of meat 
and milk, disruption of children’s education from missed 
school days [25], and hindered agricultural develop-
ment and prosperity [26]. Until 2021, treatment options 
for HAT required infusion, injection, or hospitalization 
which presented significant challenges for patients living 
in remote areas [27]. Fexinidazole, the first all-oral treat-
ment for both stages of HAT, was approved by the U.S. 
Food & Drug Administration in July 2021 for patients 
6  years and older that weigh ≥ 20  kg [28]. There are no 
prophylaxis or vaccines currently available for either 
form of HAT, which elevates the importance of control 
measures.

Identifying tsetse presence and targeting disease 
management
The World Health Organization (WHO) targeted the 
elimination of HAT as a public health problem by 2020 
in its 2012 Neglected Tropical Diseases (NTD) road-
map [29]. Since then, progress toward HAT elimination 
has involved myriad stakeholders and led to a reduc-
tion of gHAT cases by 96% and rHAT cases by 97% from 
2009 to 2018 [30]. By 2030, disease endemic countries 
and the WHO aim to eliminate transmission of gHAT; 
the zoonotic nature and more complicated pathology of 
rHAT makes elimination far more complicated and not 
currently considered feasible [30–32].

Climate change will have complex impacts on tsetse 
fly, AAT, and HAT distributions. Tsetse fly population 
dynamics are inextricably linked to environmental driv-
ers such as temperature and vegetation structure that 
constrain spatial distribution and potential density. Con-
tinued progress toward AAT and HAT elimination in the 
wake of climate and land cover changes must account for 
spatial and temporal expansion rates of tsetse species, 
following favorable changes in local or regional weather, 
and longer term land-cover changes such as greening or 
bush expansion in areas resulting from increased rainfall 
over multiple years [33]. This study builds on previous 
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work that captured Tsetse dynamics 45 days after remote 
sensing data collection and a predictive infectious disease 
agent based model [14, 34]. Here, we seek to expand our 
modeling portfolio with an agile modeling methodology 
that is customizable by tsetse species or group to bet-
ter capture and thereby reduce the critical time period 
between remote sensing data collection and tsetse con-
trol activities in the field. For the purposes of this study 
the model is parameterized for the Morsitans group 
within the tsetse fly genus Glossina. The second major 
aim of this paper was to advance the modeling environ-
ment developed in DeVisser et  al. [35] to one widely 
available, easily updatable, and low/no cost to affected 
countries.

Fundamental niche vs. realized niche and the time lag 
problem
The literature on predicted disease vector distributions 
is robust where the aim of different models is to predict 
species’ fundamental or realized niche [36–40]. Funda-
mental niche is the geographic space where environmen-
tal conditions allow the modeled species to exist, absent 
biotic interactions. Realized niche considers biotic inter-
actions including competitive exclusion and is the space a 
species is known to occupy [41–43]. The outcomes of this 
model are intended to identify fundamental niche and 
plausible habitat in Kenya by elucidating geographical 
spaces at given times wherein environmental conditions 
and spatial connectivity permit the species to exist. In 
this paper, we assume tsetse populations have not been 
systematically cleared and species corridor blocking is 

not occurring, thus the fundamental and realized niches 
overlap.

This paper addresses a critical temporal problem in the 
use of satellite imagery to model ‘current’ tsetse habitat, 
which is dependent on the revisit rate of the satellites, 
image data delivery, and the processing architecture 
used. There is inevitably some time lag between imagery 
capture and model output. In the case of GEE-TED [a 
Tsetse Ecological Distribution (TED) model that uses 
Google Earth Engine (GEE); refer “Methods” section 
for a complete description of GEE-TED], there must be 
imagery capture and subsequent ingestion into GEE 
before modeling can be performed; this can take multiple 
weeks (a 22 day lag is depicted in Fig. 1), though lag time 
varies per image. Once the MODIS biophysical data 
(i.e., temperature and NDVI) are ingested into GEE, the 
GEE-TED algorithm can be completed in minutes. The 
delay between MODIS image capture and data ingestion 
into GEE is particularly problematic during the wet 
season when tsetse movement is known to increase due 
to elevated humidity and decreased temperature [44]. 
Within the data gap time period, tsetse will have matured 
and may have reproduced multiple times, and would have 
been able to travel at least 500 m (Fig. 1) [35, 45]. From 
April 7th, 2003 to May 9th, 2003—a 32  day timespan—
the habitable area for tsetse (as measured via GEE-
TED) increased by ~ 12.8%, an overall change in area of 
approximately 5719 square kilometers. If tsetse habitat is 
modeled at the later stages of a data gap during the wet 
season, large swaths in need of tsetse remediation could 
be completely overlooked.

Fig. 1 Timeline of MOD13Q1 imagery capture and GEE ingestion for use in GEE-TED. See “Methods” section for details on GEE-TED. Also depicted 
are future imagery dates, approximate reproduction rate, and approximate maturation rate. Today (the date of diagram creation) is included 
as a reference to show the lag between desired model run date and data availability. Approximate maturation and reproduction rates (16 
and 9 days, respectively) are from Gooding and Krafsur [45]. The tsetse movement rate depicted here corresponds with the TED model by DeVisser 
et al. [35]
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The heuristic presented here addresses the time lag 
problem by introducing a Bayesian Maximum Entropy 
(BME) kriging model that uses GEE-TED as a training 
tool to predict tsetse habitat during the data gaps, as 
well as further into the future, to more accurately convey 
‘current’ tsetse habitat at more points in time. Outputs 
from this analysis and studies utilizing this heuristic will 
provide needed information to target both the where 
and when of tsetse habitat for more effective disease 
relief and prevention. Furthermore, GEE-TED is openly 
accessible and designed such that results from this 
study can be replicated for Kenya, as well as new maps 
generated for any region so long as site-specific tsetse 
species parameterizations are known. Likewise, the BME 
kriging model used here is also openly accessible and 
generalizable across geographies.

One of the major strengths of our approach is utiliz-
ing cluster and parallel computing in conjunction with 
a Monte Carlo model for the BME analysis. A past limi-
tation of BME methodology is the inability to process 
large datasets using fine spatiotemporal scales because 
of the computationally intensive nature of the calcula-
tions. Current literature has concluded parallel comput-
ing could be utilized to maximize BME’s computational 
efficiency [46–49]. To the best of our knowledge, our 
proposed framework is amongst the first to implement 
parallel computing in conjunction with a Monte Carlo 
analysis to optimize the BME methodology.

Methods
To predict Morsitan group tsetse presence in Kenya the 
existing Tsetse Ecological Distribution (TED) model—
a dynamic raster species distribution model was used 
[35]. As described in DeVisser et al. [35], TED integrates 
four Moderate Resolution Imaging Spectroradiometer 
(MODIS) datasets: (i) Normalized Difference Vegetation 
Index (NDVI, MOD13Q1) [50], a proxy for soil moisture, 
(ii) day land surface temperatures (LST, MOD11A2) [51], 
(iii) night LST, and (iv) Land-Use/Land-Cover (LULC, 
MCD12Q1) [52, 53] to create a location-based funda-
mental niche model of Morsitan group tsetse presence 
[35]. TED rational, variables, and model creation are 
described in detail in [35]. TED generates a post hoc map 
of tsetse suitability every 16 days (the temporal resolution 
of MOD13Q1) at a 250-m spatial resolution using the 
MODIS datasets to assess binary habitat suitability. The 
suitability maps are then aggregated utilizing Boolean 
logic to populate a fundamental niche map computing 
presence probability [35]. In addition to habitat suitabil-
ity, TED integrates tsetse movement rates to account for 
seasonal expansion and contraction of the geographic 
niche [35].

The TED model used in this research was adapted from 
the original ArcPy heuristic developed by Devisser et al. 
[35] to function in Google Earth Engine (GEE) using 
the JavaScript API [54], henceforth referred to as GEE-
TED. All data products used in the original TED model 
(MOD13Q1, MOD11A2, and MCD12Q1) are available in 
GEE. This adaptation was constructed to leverage GEE’s 
infrastructure for acquiring and processing spatially 
continuous and up-to-date MODIS climate and LULC 
products. GEE-TED performs the same as the original 
TED model, with one exception; in the adapted GEE-
TED, one LULC layer was generated to mask suitability 
rather than masking based on yearly LULC. The mode of 
both versions of the MCD12Q1 product (V006 and V051) 
was calculated and a binary suitability grid produced 
where either or both versions showed a suitable LULC 
type. The decision to treat LULC in this manner was 
based on documented uncertainty associated with pixel 
‘flipping’ (i.e., land classifications alternating due to subtle 
thresholds) occurring in the MCD12Q1 products [55]. 
GEE-TED is openly accessible via Harvard Dataverse 
[56]. Figure 2 shows a sample GEE-TED output alongside 
a satellite view of Kenya.

Suitable LULC classes (e.g., woody vegetation) 
were selected using the parameters recommended by 
DeVisser and Messina [57]. Following the original TED 
parameterization for Morsitans group tsetse flies, climate 
and land suitability thresholds included: NDVI > 0.39, 
day LST between 17 and 40  °C, and night LST between 
10 and 40  °C [35]. Years under observation for this 
analysis were 2006 through 2017, with a 3-year model 
initialization from 2003 to 2005 (Fig. 3). The results from 
this model were used to train a BME kriging model. 
While this manuscript focuses on the Morsitans group 
of tsetse flies, the model may be re-parameterized to 
support identifying the spatial distribution of other tsetse 
species or groups as the code for GEE-TED is fully open 
access [56]; refer “Discussion and conclusions” section 
for additional commentary.

BME analysis
BME is a space–time geostatistical kriging method 
using space/time random field (S/TRF) theory to 
minimize mean squared error (MSE) and provide the 
Best Linear Unbiased Predictor (BLUP) to estimate 
spatiotemporal random fields. In S/TRF theory, 
variables such as tsetse presence are given a value at 
a space/time coordinate (latitude, longitude, and time 
period). The S/TRF is built upon this known data and 
is itself a collection of possible values to predict the 
unknown spatiotemporal distribution of a variable [58]. 
A BME kriging analysis has three primary procedures. 
First, the S/TRF’s prior probability density function 
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(PDF) is estimated. A covariance function representing 
the S/TRF’s space–time variability is calculated and 
used to develop the prior PDF. Second, a posterior PDF 
is found using Bayesian conditionalization. Finally, the 
posterior PDF is used to obtain space–time estimates 
of tsetse presence in Kenya, represented as spatial 
random fields [59–65]. These estimates are then used 
to create maps of predicted Morsitans group tsetse 
presence across Kenya. Detailed information on 
BME’s mathematical framework has been thoroughly 
described [58, 66–69]. Additionally, BME code libraries 
are freely available along with BMEGUI, a Graphical 

User Interface option to fully automate the BME model 
creation [59].

Numerical processing of the BME kriging analysis 
was performed using the University of North Carolina 
at Chapel Hill’s Longleaf computing cluster (https:// its. 
unc. edu/ resea rch- compu ting/ longl eaf- clust er/). Compu-
tational analysis was completed on the cluster utilizing 
MATLAB 2017a [70] harnessing the BMElib 2.0b pack-
age, a freely available MATLAB library [71] which can 
be downloaded at https:// mserre. sph. unc. edu/ BMElab_ 
web/ and MATLAB’s parallel computing toolbox [72].

Twelve years of GEE-TED model results (2006–2017; 
276 MODIS time periods at a 16-day temporal resolution; 

Fig. 2 Sample GEE-TED output showing the spatial variability of Morsitan group tsetse for 2016–2017 alongside Google satellite imagery. 
An interactive version of this map is available at https:// carto scien ce. users. earth engine. app/ view/ gee- ted and the code is accessible via [56]

https://its.unc.edu/research-computing/longleaf-cluster/
https://its.unc.edu/research-computing/longleaf-cluster/
https://mserre.sph.unc.edu/BMElab_web/
https://mserre.sph.unc.edu/BMElab_web/
https://cartoscience.users.earthengine.app/view/gee-ted
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9,319,435 pixels per image) were used to train the BME 
model to predict tsetse presence in Kenya. In the BME 
model, GEE-TED results from 2006 to 2015 were used 
as the training set and data from 2016 to 2017 were used 
to validate the BME predictions. The raw training data-
set is massive, consisting of more than 2 billion unique 
data points. This dataset was too large to calculate the 
computationally intensive algorithms of the BME krig-
ing methods. Thus Kenya was partitioned into five verti-
cal segments (the minimum number of partitions so that 
the processing system could handle the data workload) 
and a 25 km buffer was added to each Area to minimize 
edge effects [73, 74]. The area partitioning was primarily 
for the purposes of data processing and aggregate results 
generated are indicative of the outcome had no parti-
tioning taken place. However, results are presented at 
the country level and by areas since the area partitioning 
closely tracks the Kenyan ecoregions and elucidates dif-
ferences across spatial domains.

To ensure the dataset meets the BME kriging require-
ments of a S/TRF that is homogeneous in space and sta-
tionary in time, the global mean trend is calculated and 
removed prior to the analysis. The global mean trend 
is a deterministic function in which the residual S/TRF 
models the uncertainties and variability associated with 
a dataset over space and time [50]. Removing the mean 
trend smooths spatiotemporal fluctuations and creates 
a dataset that is homogenous in space and stationary in 
time [60, 61, 67].

In a BME kriging model both a spatial and temporal 
mean trend are calculated and combined to create 
a global mean trend [60]. It is assumed the spatial 
component of the mean trend will remain relatively 
stable in the predicted years (2016 and 2017) and the 
spatial mean trend can be computed using the existing 

dataset. However, the temporal mean trend changes 
every time period, and we are predicting into the future 
(a modifiable temporal unit problem effect; [73, 74]), thus 
a trend based upon the average for each MODIS time 
period within the years 2006–2015 was used to estimate 
the temporal mean trend.

The mean trend-removed residual data are then used to 
conduct a covariance analysis for the dataset. Covariance 
is a measure of the association and direction of the linear 
relationship between two variables, describing how they 
change in relation to one another. A ‘covariance function’ 
is a quantitative description of the correlation between 
pairs of observations as a function of the inter-pair dis-
tances. The covariance model identifies how much 
weight/influence each neighboring point should exert 
in the calculation of a prediction [58, 60, 64]. Although 
the covariance model is a space–time function [64], the 
parameters for the temporal and spatial components 
are computed and investigated independently. Distinct 
space–time covariance models were created for each of 
the five Areas in Kenya based on a nested additive expo-
nential space–time covariance model as shown in the fol-
lowing equation:

To reduce run-time, the space and time covariance 
analyses were run in parallel for each Area, with 12 
parallel ‘workers’ per Area. A worker is a computa-
tional driver that gives specific jobs to a computer’s 
computational sectors, often specific cores of a com-
puter [72]. This method produced the temporal covar-
iance. However, the spatial covariance analysis was 
too computationally intensive, maxing out the 1  TB 

cx(r, τ ) = c1 exp(−3r/ar1) exp(−3τ/at1)

+ c2 exp (−3r/ar2) exp(−3τ/at2)

+ c3 exp (−3r/ar3) exp(−3τ/at3).

Fig. 3 GEE-TED model diagram. *Suitable LULC types from DeVisser and Messina [43]. **Outputs from GEE-TED were used in the BME model
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memory available on the computing cluster. To solve 
this issue, a Monte Carlo analysis was used to estimate 
the spatial covariance for each of the Areas. To identify 
the optimum percentage of the dataset used and the 
number of Monte Carlo runs, two randomly selected 
testing locations with 50,000 continuous points were 
selected from each Area, totaling 10 test regions. The 
percentage of points used for each of the covariance 
Monte Carlo model tests was 1%, 2.5%, 5%, 10%, 20%, 
and 30%. The number of Monte Carlo trial runs was 
also tested using N = 10, 25, 50, 75, 100, and 250.

Once the results of the Monte Carlo trials were pro-
duced, two methods were used to evaluate the effec-
tiveness of the prediction on the test regions and 
select the ideal parameters for the analysis. First, the 
test regions’ covariance, also known as the experimen-
tal covariance, was plotted to assess if there was any 
notable difference in the final covariance function that 
could be fitted to the test regions. Second, the aver-
age MSE was computed. Once the ideal conditions 
for increasing accuracy and decreasing run-time was 
found in the test regions, the spatial covariance analy-
sis was run for each of the areas in Kenya.

After the covariance analysis was conducted, tests 
were run to identify the most appropriate kriging 
model for the dataset. For each of the five Areas in 
Kenya, two sets of 1000 spatially contiguous points 
with a randomly selected starting point were chosen. 
The kriging methods were then tested for four ran-
domly selected time periods; two in 2016 and another 
two in 2017, resulting in 8 sets of predictions per 
Area. Five types of kriging models were tested: (i) sim-
ple kriging (no mean), (ii) ordinary kriging (constant 
mean), (iii) universal quadratic kriging (quadratic, con-
stant + linear + quadratic mean), (iv) universal cubic 
kriging (cubic, constant + linear + quadratic + cubic 
mean) and (v) universal fourth power kriging (fourth 
power, constant + linear + quadratic + cubic + fourth 
power mean). As these are nested space–time models, 
20 permutations of space–time kriging models were 
tested (e.g., simple kriging spatial model with an ordi-
nary kriging temporal model). The MSE for the space 
and time kriging estimates was used to determine 
the model that was the most accurate predictor. The 
method with the lowest MSE for all the tests was then 
used to run the BME kriging model.

The final steps in the BME kriging analysis are to add 
the mean trend back to the residual data and create 
the final maps and statistics. Once the mean trend was 
returned to the data, the kriging results were rounded 
to either 1 or 0 (Boolean tsetse present or not present) 
to compare the results to the original GEE-TED model 

data. Additionally, the rounded results were used to 
make the final prediction maps and calculate MSE.

Results
Spatial and temporal mean trends
The spatial and temporal mean trends were calculated 
for each Area in Kenya and are presented in Figs. 3 and 
4. The spatial distribution of Morsitans group tsetse 
presence throughout Kenya is heterogeneous. Area 1 
has the highest overall concentration of tsetse presence, 
primarily located in what is south-west Kenya along Lake 
Victoria and bordering Tanzania. In the other Areas, 
tsetse presence is most often in the central and southern 
regions. This is especially prevalent in Areas 4 and 5 
where the spatial trend of tsetse presence is concentrated 
in the southern portion with little tsetse presence 
elsewhere. The arc in the raw Area 4 data extending from 
the west-central, to south-east is the River Tana.

In the temporal component (Fig.  5), all Areas have a 
cyclical pattern with increased tsetse presence in the 
rainy seasons and decreased tsetse presence in the dry 
seasons. Drought conditions can be seen in Area 1 in 
years 2006 and 2015 (MODIS time periods 2 and 210, 
which correspond with Jan. 17, 2006 and Feb. 2, 2015, 
respectively) and Area 2 in 2009 (MODIS time period 90, 
which corresponds with Nov. 17, 2009). Area 1 shows the 
greatest variation between the dry and wet seasons while 
Area 4 has the least variation between the dry and wet 
seasons.

Monte Carlo results
To run the spatial covariance analysis, Monte Carlo 
simulations were performed. An optimization study was 
conducted to determine the most efficient and accurate 
methods for this analysis, i.e., the number of Monte 
Carlo trials and percentage of the dataset to be used. To 
select the ideal parameters for the Monte Carlo analysis, 
differences in resulting experimental covariance were 
produced using 30%, 20%, 10%, 5%, 2.5%, and 1% of the 
data, then plotted and visually assessed to ascertain any 
impact on a covariance model that would be fitted to 
the data. These tests found there were small differences 
in plots of the experimental covariance according to 
the percentage of spatial or temporal points used in the 
model; however, the differences were too small to impact 
the final fitted covariance model. Therefore, to optimize 
the efficiency of the analysis and reduce runtime, the best 
mean squared error (MSE) analysis was only performed 
on the datasets composed of 1%, 2.5%, and 5% of the total 
points. The MSE results for reducing both the percentage 
of spatial or temporal points in the model found 5% of 
the space and 5% of the time datasets produced the most 
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Fig. 4 Spatial mean trend results for the five Areas in Kenya

Fig. 5 Temporal mean trend results for the five Areas in Kenya
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accurate and efficient analysis (see Table  1). Finally, the 
number of Monte Carlo trial runs was investigated. 
Again, there were minimal differences in the covariance 
models that could be fitted to the data. The MSE results 
then showed that 50 trial runs minimized the run-time 
while preserving accuracy. Thus, the final parameters 
used in the spatial Monte Carlo covariance analysis were 
5% of the dataset and 50 model runs.

Final covariance models
The parameters for the final covariance model for each 
Area are shown in Table 2. The variable  arx shows the spa-
tial areas of influence for each component of the covari-
ance;  atx demonstrates the temporal areas of influence;  cx 
variable describes the portion of the covariance that part 
of the model represents.

Graphs of the covariance functions are shown in Fig. 6. 
By looking at the sill, also known as the covariance at 
distance 0, and the slope of the model near the sill, the 
spatial–temporal variability of the dataset is explained. 
The larger the value of the sill and the steeper the slope 
illustrates increased variability in the data [60]. All the 
Kenyan tsetse spatial covariance models show high 
spatial variability within the first 6  km. These temporal 
covariance models show great seasonal variation and a 

quick degradation of influence between points within 
6  months, followed by seasonal stability in the dataset. 
The covariance range shows the temporal and spatial area 
that a data point will influence a neighboring estimation 
point in the model. The range is defined as the distance 
from the sill to the point where the model becomes 
asymptotic losing 95% of inter-pair correlation [60]. In 
this dataset, all the covariance models become asymptotic 
within 25 km and 10 MODIS time periods (~ 6 months), 
and thus points greater than 25 km and 6 months apart 
will exert minimal influence on an estimation. Therefore, 
demonstrating the 25  km overlapping border between 
the 5 Kenyan areas is sufficient to remove the edge effect. 
Because all these models have asymptotic curves, they 
show a dataset that is homogeneous in space and time 
[60, 64].

Kriging results
Table  3 shows the total times each method performed 
best in the eight tests for the spatial component and the 
eight tests for the temporal component of kriging in each 
Area. In all Areas, simple kriging performed the best, 
producing the lowest MSE in most tests. Therefore, sim-
ple kriging was used for both the temporal and spatial 
components for the kriging analysis.

Table 1 Monte Carlo analysis test results for spatial covariance

Spatial percentages Temporal percentages Runs

Area and 
section

Best visual Best MSE Area and 
section

Best visual Best MSE Area and 
section

Best visual Best MSE

1, 1 0.025 0.05 1, 1 0.025 0.025 1, 1 50 50

1, 2 0.05 0.05 1, 2 0.05 0.025 1, 2 10 50

2, 1 0.05 0.05 2, 1 0.05 0.05 2, 1 50 50

2, 2 0.05 0.05 2, 2 0.05 0.05 2, 2 50 50

3, 1 0.05 0.05 3, 1 0.05 0.05 3, 1 50 75

3, 2 0.05 0.025 3, 2 0.05 0.05 3, 2 50 75

4, 1 0.05 0.05 4, 1 0.05 0.05 4, 1 50 25

4, 2 0.05 0.025 4, 2 0.05 0.05 4, 2 50 50

5, 1 0.05 0.05 5, 1 0.025 0.025 5, 1 50 10

5, 2 0.05 0.025 5, 2 0.025 0.025 5, 2 50 10

Table 2 Covariance model parameters, where  ar is shown in m and  at in MODIS time periods

Area c1 ar1 (km) at1 c2 ar2 (km) at2 c3 ar3 (km) at3

1 0.045 2.5 2300, ~ 100 years 0.025 20 4, ~ 2 months 0.018 40 2300, 100 years

2 0.025 0.1 5000, ~ 217 years 0.02 27.5 6, ~ 3 months 0.009 22.5 5000, ~ 217 years

3 0.026 6 23,000, ~ 1000 years 0.008 2000 13, ~ 6 months 0.008 30 13, ~ 6 months

4 0.012 2 2300, ~ 100 years 0.005 17.5 5, ~ 2.5 months [0.002, 5] 50 5, ~ 2.5 months

5 0.012 1 3, ~ 1.5 months 0.01 1 1000, 43.5 years 0.012 22.5 1000, 43.5 years
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Fig. 6 Covariance models for each of the areas in Kenya

Table 3 Summarized Kriging type test results listing the number of times each method performed the best in each of the tests 
conducted

Key: [space, time, total]

Area Simple kriging Ordinary kriging Universal kriging: 
quadratic

Universal kriging: 
cubic

Universal 
kriging: fourth 
power

1 5, 3, 8 0, 0, 0 0, 0, 0 3, 3, 6 0, 2, 2

2 5, 2, 7 1, 0, 1 0, 3, 3 2, 1, 3 1, 1, 2

3 2, 7, 9 2, 0, 2 0, 1, 1 3, 0, 3 0, 1, 1

4 7, 5, 12 0, 0, 0 0, 3, 3 0, 0, 0 1, 0, 1

5 4, 7, 11 0, 0, 0 0, 1, 1 1, 0, 1 3, 0, 3

Total 23, 24, 47 3, 0, 3 0, 8, 8 9, 4, 13 5, 4, 9
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Geospatial accuracy
The kriging model forecasts accurately estimated the 
GEE-TED model outcomes more than 93% of the 
time when observed per area (Fig.  7); when the entire 
country is used, the total accuracy of the BME kriging 
prediction is 97–99%. Area 4 has the best predictions 
for the data followed by areas 5, 2 and 3. Area 1 has 
the most inaccurate predictions in Kenya (Fig.  7). As 
shown in Fig. 6, there is a slight decrease in the model’s 
ability to predict after the fifth MODIS time period, 
though the prediction stabilizes and does not have a 
subsequent decreasing trend in accuracy. However, 
accuracy does vary greatly within time periods due to 
seasonality. In Area 5, there is a cyclical nature to the 
prediction power of the kriging model that appears to 
be caused by seasonal variation. For Areas 2, 3, and 
4 there are fluctuations throughout the time period; 
however, the ability for the model to predict based 
on all inaccurately predicted points stays relatively 

stable and possibly due to less seasonal variability in 
these regions. Total inaccurately predicted points are 
minimized the most in Area 4, and Area 1 exhibits the 
worst predictions.

The other notable result is the model is better at pre-
dicting absence than presence; there are many more 
absence points than presence, with total absence in 
the  106 range (Fig.  7) and presence in the  105 range 
(Fig.  7). Therefore, absence is dominant in the overall 
inaccuracy data. To clarify the use of the terms ‘inac-
curate presence’ and ‘inaccurate absence’—an inac-
curate presence prediction refers to the kriging model 
incorrectly classifying as absence where the GEE-TED 
model predicts presence, and an inaccurate absence 
prediction refers to the kriging model incorrectly clas-
sifying as presence where the GEE-TED model predicts 
absence. The prediction rate for absence is between 94 
and 99.8% (Fig. 7). Areas 1 and 5 predicted absence the 
worst and Areas 4 and 3 predicted absence the best. 

Fig. 7 a All inaccurately predicted points (presence and absence) for the Kenya Kriging Model in 2016–2017, b presence data from the TED model 
over time (2016–2017) c inaccurately predicted absence from the BME model 2016–2017, d inaccurately predicted presence from the BME model 
2016–2017
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The prediction accuracy for presence is between 65 
and 99% (Fig. 7) with Area 3 having much larger issues 
with prediction than all of the other Areas; Area 5 has 
an almost perfect prediction for presence. For the other 
three Areas, the presence predictions are still high 
(between 75 and 90% accurate).

There are a few factors influencing the aggregated 
results for the entire country. First, the number of data 
points varies by Area. Area 4 has the largest number of 
points followed by Area 3, then 2, 1, and 5. There are 
two reasons for this. First Areas 2, 3 and 4 have buffers 
on both sides, whereas Areas 1 and 5 are on Kenya’s bor-
der and only have buffers on the interior sides. Second, 
the interior portions of the country have a larger y-axis 
and the x-axis was used to divide the country, therefore 
Areas 2, 3, and 4 have more data points. Consequently, 
the results of Areas 2, 3, and 4 have the greatest effect on 
the results for the country. Area 4 has the most absence 
points and Area 5 has the least, whereas Area 1 has the 
most presence points and Area 4 has the least. Area 4 
having both the most absence, total points, and least 
presence gives it a strong effect on the country-wide 
results.

Depictive maps are presented in Fig. 7 to illustrate the 
accuracy of the predictive kriging model at two specific 
time steps—the first and last days of the prediction 
range (January 1, 2016 and December 19, 2017). These 
two dates were selected because the kriging model 
stabilizes as it advances in time and these dates highlight 
a range of prediction accuracy (Fig.  8). On the first 
prediction date (January 1, 2016), only 1.10% of Kenya 
was inaccurately predicted (presence or absence), and on 
the last date (December 19, 2017), only 1.98% of Kenya 
was inaccurately predicted. Given that a large portion of 
Kenya is unsuitable for tsetse persistence (represented 
as tsetse absence on the maps), model accuracy appears 
very high; however, these metrics are susceptible to the 
modifiable areal unit problem [73–76], a term used to 
acknowledge that data aggregations can vary depending 
on the geographic extent under observation. To present 
a more conservative estimate of accuracy, the inaccurate 
predictions were also tabulated over only the maximum 
extent of the GEE-TED and kriging models (depicted 
in gold in Fig.  8). Under this geographic delineation, 
9.95% of Kenya was predicted incorrectly on January 1, 
2016 and 17.88% of Kenya was predicted incorrectly on 
December 19, 2017.

Model accuracy was also characterized across 
the complete temporal range (2016–2017). Figure  9 
illustrates the frequency of inaccurate predictions 
for absence, presence, and both. Overall, prediction 
inaccuracy on average for both presence and absence 
was 25.2%, though some areas are consistently predicted 

inaccurately (e.g., western Kenya near the city of Kitale). 
The average inaccuracy of presence only was 26.8% 
and the average inaccuracy of absence only was 21.7%. 
Figure  10 shows the frequency of predicted presence 
across the complete temporal range for both the GEE-
TED and kriging-based models. The second map in the 
Fig.  10 series demonstrates the stability of the kriging 
approach and the third map highlights the differences 
between the two models.

Discussion and conclusions
Tsetse control and nagana eradication
The discourse around eradication versus control of tsetse 
has evolved from total eradication to mitigation to man-
agement strategies. Ontological uncertainty remains. Our 
position is that tsetse control and disease management 
are most effective in places where tsetse persist in small 
numbers or only for short time periods. Refugia manage-
ment, whether through the strategic placement of targets 
that reduce populations or prevent expansion of the flies 
into new areas, elimination of a substantial portion of the 
female tsetse population, or the intensive synoptic spray-
ing of insecticides, tend to be short-lived or spatially con-
strained solutions. Many East African national parks use 
the encircling targets method both to keep tsetse from 
invading nearby pasture lands but also to keep pastoral-
ists with trypanosomiasis susceptible cattle out of the 
parks. The purpose of the original TED model and the 
revised GEE-TED model was the identification of tsetse 
refugia. In some corners, management or eradication of 
refugia is viewed as a viable solution. However, disease 
management, which should arguably be the goal, will 
allow the alternative of control. Seasonally, tsetse areal 
coverage expands and contracts with the rainfall, suit-
able soil moisture, and presence of food sources. It is in 
these areas that a rapidly growing population of tsetse 
meet with the transitory food source of cattle. The cattle 
herds travel long distances and are the obvious conduit 
for nagana and trypanosomiasis spread. By minimizing 
the opportunities for these two distinct groups to meet, 
disease mitigation efforts are maximized. This project 
sought to offer an alternative to the deterministic TED/
GEE-TED model that produces a 45 day post-data collec-
tion map of tsetse presence with a geostatistical solution 
that presents the probability of presence across all spaces 
and times.

The BME model is a strong alternative to predict tsetse 
distributions especially given the lack of spatially accurate 
rainfall forecasting and delayed processing of remotely 
sensed data collectively in the − 45  days to present to 
180  days in the future temporal window. In previous 
work, we explored the links between climate and 
tsetse [77] and demonstrated the value of temperature 
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predictions and unreliability of the rainfall predictions. 
In future studies, incorporating climate change model 
data into the BME modeling environment could easily 
be accomplished. The mean trend of the BME model in 
this analysis is constructed by using the average tsetse 
presence for each space–time period which is partially 
a function of climate. The mean trend indicator could 
easily be replaced in future studies by a climate change 
model to enhance the model’s prediction abilities. This 
new mean trend could be a linear regression model that 

incorporates the effect average temperature, rainfall 
and vegetation changes would have on each location’s 
tsetse presence [78]. Various studies have used linear 
regression and other models to replace the mean trend 
to enhance the prior dataset of the BME model [79–
82]. BME approximates a normal distribution, but the 
errors of omission explicitly minimized with GEE-TED 
and TED are less likely to be equally represented across 
both methods. With BME errors of commission are less 

Fig. 8 First and last kriging predictions compared to GEE-TED model results. Top: January 1, 2016; bottom: December 19, 2017. Top-left: kriging 
model results; top-middle: GEE-TED model results; top-right: comparison of results highlighting inaccurate predictions (depicted in red). 
Bottom-left: kriging model results; bottom-middle: GEE-TED model results; bottom-right: comparison of results highlighting inaccurate predictions 
(depicted in red). Presence predictions depicted in black and absence depicted in gray. Depicted in gold is the maximum extent of predicted 
presence across both models and across the complete temporal range under observation
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likely as well, albeit still present as the commission errors 
embedded within the GEE-TED model are retained.

Parameterization and‑use/land‑cover
GEE-TED relies on parameterization to produce 
reliable results. Before using the model, it is critical to 
understand the temperature, available moisture, and 
LULC suitability requirements for a specific species in 
a specific geography, e.g., Morsitans (savannah) and 
Palpalis (riverine) tsetse groups in Kenya will require 
different model parameters. This need for species-
specific parameterization is expressed in the results 
from GEE-TED and the BME kriging model. The spatial 
distribution of Palpalis and Fusca tsetse groups across 

Kenya is not conveyed in the results presented here since 
their behavior and habitats differ from the Morsitans 
(savannah) tsetse. However, with the framework and 
code provided, only minimal modifications are needed to 
retrofit GEE-TED for use with other, or multiple, varieties 
of tsetse. NDVI used here as a proxy for soil moisture/
relative humidity [83] but may not be generalizable 
across species/geographies and a thorough review will be 
needed to identify a suitable threshold.

LULC accuracy in Africa is integral to GEE-TED. While 
the TED model is designed to accommodate timeseries 
LULC input, GEE-TED currently uses a static composite 
of MCD12Q1 (versions 051 and 006) due to interannual 
uncertainty in the classifications [77]. Future versions 

Fig. 9 Frequency of inaccurate tsetse presence and/or absence predictions (2016–2017). Left: incorrect prediction frequency (absence 
and presence); middle: incorrect prediction frequency (absence); right: incorrect prediction frequency (presence)

Fig. 10 Comparing tsetse presence frequency of the GEE-TED and kriging models (2016–2017). Left: GEE-TED model predicted presence 
probability; middle: kriging model predicted presence probability; right: differences in results (kriging probability subtracted from GEE-TED 
probability)
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of GEE-TED will include timeseries LULC as more reli-
able products are ingested into the GEE repository. One 
such dataset is the Copernicus Global Land Cover Lay-
ers Collection (CGLS-LC100) derived from the PROBA-
V satellite beginning in 2015 and delivered annually 
through 2019 at a 100-m spatial resolution, continuation 
of which is planned using Sentinel-2 [84]. CGLS-LC100 
is presently global; however, the first iteration (Collec-
tion 1, 2015) was focused on the African continent and 
showed an overall accuracy of 74.3 ± 1.8% [85]. The cur-
rent release (Collection 3, Level 1) is an improved model, 
showing an overall accuracy in Africa of 80.3 ± 1.9% in 
2015. The overall accuracy of Level 2 (2015) is 76.8 ± 2.0% 
[80]; Level 2 differentiates between open and closed 
forest types, which is important for delineating suita-
bility for different tsetse species [86]. The fine spatial res-
olution of CGLS-LC100 (100-m), compared to MODIS 
(MCD12Q1, 500-m), is likely to prove beneficial in com-
plex landscapes such as Sub-Saharan Africa where LULC 
mixing takes place at fine spatial scales.

Conclusions
Model generalizability and accessibility
These models, and any species distribution model, must 
have a minimum mapping unit that works with the biol-
ogy and system dynamics of interest. Here, we are for-
tunate that the flying distance population leading edge 
expansion rates match the spatial resolution of the 
MODIS data product. While it would be trivial to pro-
gram, albeit non-trivial computationally, the biology of 
the system does not require finer spatial resolution and 
in fact would likely introduce false precision in the pres-
entation of the results. While a popular path to publi-
cation, improved spatial resolution is not needed here. 
With tsetse and nagana, high temporal frequency of data 
collection and rapid processing of those data by the pro-
viders is critical. The many papers using static landcover 
suffer similarly from two primary problems: the obvious 
limitation of time misses both seasonal effects as well as 
important patterns emerging from climate change. One 
notable example of the latter is the expansion of woody 
brush in North East Kenya, effectively captured both 
in the time series land cover products and anecdotally 
through the regional development and tsetse literature.

Among the benefits of model integration in GEE is the 
flexibility to accommodate continually updating datasets. 
The MODIS temperature, NDVI, and land-cover datasets 
are regularly updated and GEE-TED can be run at any 
time using new date ranges. The model is also generaliz-
able across geographies, accepting any country or region 
of interest. Kenya is geophysically complex, maintaining 
stable albeit discontiguous tsetse populations, and suf-
fering a high burden of AAT. Adapting the TED model, 

previously validated in Kenya, for use in GEE is a major 
milestone in accessibility given that GEE eliminates the 
costly software requirements of other GIS platforms and 
the hardware requirements for processing large volumes 
of geospatial data. Additionally, GEE-TED is not limited 
to MODIS products and can be altered as new datasets 
become available. Four years from now, a full decade of 
imagery collected by the Sentinel-2 constellation will be 
available at 10- and 20-m spatial resolutions. We found 
parallel computing in tandem with Monte Carlo methods 
granted the ability to analyze significantly larger datasets 
(more than 2 billion points) at finer spatiotemporal scale 
than had previously been possible. This methodology is 
particularly useful for large regulatory or health studies 
that necessitate a country wide data analysis at a fine spa-
tiotemporal scale; examples include predicting air qual-
ity for the continental United States. It is also useful for 
models that require data from multiple model simula-
tions [49].

Conversely, BME kriging can be used to gener-
ate results in a more timely and computationally effi-
cient manner by: (1) utilizing coarser spatial resolution 
imagery (e.g., 1000-m instead of 250-m), depending on 
the user’s scope/needs; (2) reducing the sample area to 
approximately the size of a few United States counties; (3) 
increasing the temporal scale to months or years instead 
of approximately every 16 days. Shrinking the spatiotem-
poral grid size will allow the analysis to be performed on 
desktop workstation. The GEE-TED script is also capable 
of both resampling to coarsen the spatial resolution and 
masking to reduce the output area. Furthermore, with a 
minimized spatiotemporal scale, the BME analysis can 
be fully automated, i.e., calculation and selection of the 
mean trend, covariance, and BME estimation using the 
freely available BMEGUI software. BMEGUI relieves the 
necessity for high-level programming skills and results 
generated through a BMEGUI analysis are indistinguish-
able from BME analyses performed on other platforms 
such as MATLAB [59].

Initializing GEE-TED and the BME analysis in 
Kenya and generalizing it to other countries is relevant 
to the current study of AAT. In 2020, the European 
Commission created, “Controlling and progressively 
Minimizing the Burden of Animal Trypanosomosis” 
(COMBAT) program [87, 88]. The COMBAT project 
refers to AAT as a “scourge” for livestock in continental 
Africa and notes the possibility of its spread to Europe 
if not properly contained [88]. The program’s goals 
include a sustained, continent-wide reduction of AAT; an 
increased understanding of the geographic expansion of 
AAT; and improvements in focused and efficient disease 
control [87, 88]. There has been limited progress in AAT 
control over the past 20 years in contrast to the successful 
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reduction in HAT [87]. The methods described in this 
article can contribute to the goals of that program.
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