
Miller et al. Int J Health Geogr           (2020) 19:56  
https://doi.org/10.1186/s12942-020-00250-0

METHODOLOGY
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Abstract 

Background:  Population-representative household survey methods require up-to-date sampling frames and sample 
designs that minimize time and cost of fieldwork especially in low- and middle-income countries. Traditional methods 
such as multi-stage cluster sampling, random-walk, or spatial sampling can be cumbersome, costly or inaccurate, 
leading to well-known biases. However, a new tool, Epicentre’s Geo-Sampler program, allows simple random sam-
pling of structures, which can eliminate some of these biases. We describe the study design process, experiences and 
lessons learned using Geo-Sampler for selection of a population representative sample for a kidney disease survey in 
two sites in Guatemala.

Results:  We successfully used Epicentre’s Geo-sampler tool to sample 650 structures in two semi-urban Guatemalan 
communities. Overall, 82% of sampled structures were residential and could be approached for recruitment. Sample 
selection could be conducted by one person after 30 min of training. The process from sample selection to creating 
field maps took approximately 40 h.

Conclusion:  In combination with our design protocols, the Epicentre Geo-Sampler tool provided a feasible, rapid 
and lower-cost alternative to select a representative population sample for a prevalence survey in our semi-urban 
Guatemalan setting. The tool may work less well in settings with heavy arboreal cover or densely populated urban 
settings with multiple living units per structure. Similarly, while the method is an efficient step forward for including 
non-traditional living arrangements (people residing permanently or temporarily in businesses, religious institutions 
or other structures), it does not account for some of the most marginalized and vulnerable people in a population–
the unhoused, street dwellers or people living in vehicles.
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Background
Population-representative household survey methods 
require up-to-date, accurate sampling frames and sample 
designs that minimize time and cost of fieldwork. These 
requirements are particularly important in low- and 

middle-income countries (LMICs) where other sources 
of data, such as census data and civil registration data 
are expensive to maintain, and likely to be out of date or 
incomplete [1]. Routine national surveys including the 
Demographic Health Surveys (DHS) and Multiple Indi-
cator Cluster Surveys (MICS) uniquely generate data 
needed for program and policy planning, monitoring 
development goals, and tracking development progress. 
However, they take place approximately every 5 years in 
most settings and may be out of date at time points of 

Open Access

International Journal of 
Health Geographics

*Correspondence:  Ann_miller@hms.harvard.edu
†Ann C. Miller and Peter Rohloff contributed equally to this manuscript
1 Department of Global Health and Social Medicine, Harvard Medical 
School, 641 Huntington Ave, Boston, MA, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-6841-9439
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12942-020-00250-0&domain=pdf


Page 2 of 10Miller et al. Int J Health Geogr           (2020) 19:56 

interest. Due to weak national data systems, household 
surveys are also often the main source of disease preva-
lence estimates in LMICs.

In 2017, while planning a household survey in two 
areas of Guatemala to estimate prevalence of chronic kid-
ney disease of unknown etiology (CKDu), we considered 
available tools and methods for selecting a population-
representative sample of households. At the time, the 
2018 Guatemala Census was being planned, and only 
2002 Census data were available. We therefore consid-
ered several additional options.

Multi‑stage cluster sampling
In multi-stage cluster samples, small areas are first 
selected at random from municipal or governmental 
maps, usually based on the last census, with probability 
proportionate to population size. The implied assumption 
is that the relative proportion of population in each small 
area—or “cluster”—has not changed substantially since 
the last census. In countries with extremely outdated 
census data, modelled gridded population estimates 
have instead been used to sample clusters using free (e.g. 
GridSample.org) or hired bespoke (e.g. RTI Internation-
al’s Geo-Sampling) gridded population sampling tools 
[2]. A complete enumeration of all households is then 

conducted in the selected clusters using foot travel and 
hand-drawn sketch mapping. Finally, households are ran-
domly selected from within the enumerated clusters for 
inclusion in the study. While multi-stage cluster samples 
are widely considered to optimize statistical efficiency 
and fieldwork effort, sampling from either the available 
2002 Guatemala census, or a gridded population dataset 
derived from this outdated census, were considered poor 
options (Table 1).

Multi‑stage sampling with random‑walk initiation
Other traditional methods, including the World Health 
Organization’s former Expanded Programme on Immu-
nization (EPI) survey design, use two stage cluster sam-
ples [3]. In the EPI design, the first stage clusters are 
selected with probability proportional to population size 
from census enumeration areas (government estimates); 
however, individual households are selected through 
a “spin-the-pen” and random walk mechanism. In this 
method, a pen or bottle is placed at a central location of 
the cluster and spun. Households in the indicated direc-
tion are identified, and one is selected at random to be 
the first household of the sample. The rest are selected in 
relation to that household in either a “next-nearest” fash-
ion, or a skip pattern, in which, for example, every third 

Table 1  Pros and cons of sampling approaches and tools considered

Approach Pros Cons

Multi-stage cluster sampling

Census frame with manual cluster selection Calculate weights and CIs
Low cost of 1st-stage cluster selection
Does not require skills beyond survey statistics

Outdated 1st-stage frame
High cost of 2nd-stage household enumeration

Gridded population frame with GridSample.org Calculate weights and CIs
Low cost of 1st-stage cluster selection
Requires few skills beyond survey statistics

Outdated 1st-stage frame
High cost of 2nd-stage household enumeration

Gridded population frame with RTI Geo-Sampling Calculate weights and CIs
Requires few skills beyond survey statistics

Outdated 1st-stage frame
High cost of 1st-stage cluster selection
High cost of 2nd-stage household enumeration

Census frame with EPI design Low cost of 1st-stage cluster selection
Low cost of 2nd-stage
Does not require skills beyond survey statistics

Outdated 1st-stage frame
Cannot calculate weights and CIs

Spatial sampling

No stratification Sample not representative of the population
Requires GIS skills

Stratification on structure density Updated frame
Calculate weights and CIs

Requires GIS and other skills beyond survey 
statistics

High cost of structure enumeration (or similar 
count of buildings)

Simple random sample of structures

Enumerate all structures in OpenStreetMap, 
Google Earth, or GIS software

Updated frame
Calculate weights and CIs

High cost of structure enumeration
Requires GIS skills

Epicentre Geo-Sampler Updated frame
Calculate weights and CIs
Low cost of structure selection (no enumeration)
Requires few skills beyond survey statistics
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or fifth house in the direction is sampled. This method, 
while commonly used for decades, can introduce bias 
[4, 5], as households nearest the centrally located start 
point will be more likely to be selected than households 
at a settlement’s periphery, and assumptions about non-
response must be made; not every household has the 
same (or a known) probability of selection. This method 
was not suitable because it would require use of an out-
dated census simple frame and would not permit calcu-
lation of sample weights needed to produce unbiased 
estimates and confidence intervals of disease prevalence 
(Table 1).

Spatial samples
Other surveys have attempted to employ spatial sampling 
approaches, for example in setting up a cholera vaccina-
tion campaign in Democratic Republic of Congo [7], a 
basic pediatric health indicators survey in Zambia [8], 
or a diabetes prevalence survey in Guatemala [9]. Often, 
these samples are constructed through generation of a 
regular geometric grid, from which points are selected 
through simple, systematic, stratified or clustered ran-
dom sampling for inclusion in the study. Spatial samples 
have also been used to map risk to human health across 
space (e.g. pollution [10] or distribution of species [11]), 
and were combined with methods such as capture-recap-
ture and adjustment for population density [11, 12].

Importantly, simple spatial samples do not result in 
population-representative samples because human popu-
lations are not distributed uniformly across geographic 
areas. Simple spatial sampling designs lead to oversam-
pling of sparsely distributed households. In rural areas, 
this means that remote households will be more likely 
sampled than in settlements, and in urban areas, wealth-
ier households, which often have larger areal footprints, 
will be more likely sampled than small, densely packed 
poor households, resulting in biased population samples 
and biased results. Stratification by population density 
prior to random spatial sampling has been used in popu-
lation surveys [10], requiring population proportional to 
size sampling and weighting to account for that in analy-
sis (Table 1).

Simple random sample of enumerated households
The most statistically efficient survey design would be 
a simple random sample of households from the entire 
population if an updated, complete household sam-
ple frame were available. Surveys with smaller coverage 
areas have selected simple random samples of house-
holds, for example in China, using electronic listings of 
households in two districts [6], and Democratic Republic 
of Congo [13] using civil registry data for household list-
ings of small catchment areas. However, resource-limited 

countries like Guatemala rarely have a unique home 
address system or database of household GPS locations. 
Alternatively, satellite data can be employed to digitize 
all structures within an area [14], though this is time and 
labor intensive, and requires geographic skills and knowl-
edge that are not always available in resource-poor set-
tings (Table  1). However, in humanitarian emergencies, 
online volunteer communities can be of assistance with 
digitization and providing some of these digitization 
skills for researchers in LMICs.

Epicentre, a Non-Governmental Organization work-
ing with Doctors Without Borders, has recently created 
a new sampling tool, known as Geo-Sampler, to assist 
researchers in generating household samples using satel-
lite imagery, eliminating the need for cluster-level sam-
pling. Geo-Sampler does this via a Google Earth-based 
interface by generating random points within a polygon 
(e.g. district, or city) superimposed on up-to-date satel-
lite imagery. Users can optionally set a radius around the 
point (e.g. 10 meters to cover the size of a typical build-
ing), and incrementally select an infinite number of ran-
dom points. Importantly, in the Geo-Sampler protocol, 
all points that do not include a structure are discarded, 
resulting in a sample of structures rather than geographic 
units, which overcomes the limitations of simple random 
spatial sampling (illustrated in Fig.  1). Additional data 
about structure occupancy and population density are 
collected during the survey and used to generate sam-
ple weights that adjust for non-populated structures or 
structures with multiple households (Table 2).

To generate a population-representative sample from 
an up-to-date sample frame with maximum statistical 
power and efficient field protocols, we used Geo-Sampler 
with protocols adapted to our setting and study needs. 
Although some studies led by Epicentre have used earlier 
versions of Geo-Sampler to select households within a 
two-stage cluster design [15, 16], as yet, no articles detail 
its use as a tool to generate a full sample. Therefore, here 
we describe our experience with this new tool in design-
ing and conducting a population survey for estimating 
the prevalence of chronic kidney disease in two areas of 
Guatemala; Tecpán, Department of Chimaltenango (core 
population, excluding outlying settlements approximately 
84,000) and San Antonio Suchitepéquez, Department of 
Suchitepéquez (core population approximately 52,000).

Results
Sample selection
Of the main sample of 350 structures, 288 (82%) were 
residential, 81 (23%) had more than one building per 
residence, and 17 (5%) had more than one family per 
structure (Table  2). This was different between the two 
sites. Tecpán reported statistically significantly more 



Page 4 of 10Miller et al. Int J Health Geogr           (2020) 19:56 

non-residential buildings (44, 20.0%) than San Anto-
nio Suchitepéquez (15, 11.5%) in the main sample, and 
significantly more structures composing a residence 
(mean of 1.84 in Tecpán vs. 1.40 in San Antonio Suchite-
péquez, p < 0.01). No differences were seen between the 
two sites with respect to the number of multi-household 
structures.

Feasibility
We found sample selection using Epicentre’s Geo-Sam-
pler tool to be feasible and practicable in this setting (see 
Table 3 for efficiences and challenges). Sample selection 

was conducted by one person (ACM), after receiving 
approximately 30  min of training on the Geo-Sampler 
tool from a contact at Epicentre (AB). Creating the sam-
ple dataset in our study required three steps (described in 
detail in the “Methods” section): selecting the point-with-
buffer sample, recording sampled structure coordinates, 
and creating field maps, although updates to Geo-Sam-
pler now allow the structure coordinates to be created 
and downloaded to a spreadsheet within the tool. The 
process of selecting the 650 main and replacement coor-
dinates took approximately 24 h. The process of manually 
digitizing and recording sampled structure coordinates 

Fig. 1  Example of Comparison of Simple Spatial Sampling (dark blue markers 1-10) vs. Simple random sample of structures (light blue markers 
101-110) in which only those selected points that contain a structure were retained. Both were generated by Geo-Sampler

Table 2  Results of approaches to households in CKD prevalence survey, Guatemala

Variable Tecpán N (%) Suchitepéquez N (%) Total N P value

Structure sample size 220 130 350 0.04

Residences 174 (79.1) 114 (87.7) 288

Non residences/vacant 46 (20.1) 16 (12.3) 62

Median [IQR] structures per residence 1 [1–5] 1 [1–3]

N(%) with more than one household per structure 
(n = 158)

7 (9.0) 10 (12.2)

Household responses 174 114 288 0.008

Recruited 110 (63.2) 78 (68.4) 188

Refused 57 (32.7) 23 (20.2) 80

Ineligible or uncontactable 7 (4.0) 13 (11.4) 20
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took approximately another 12.5 h. The process of creat-
ing field maps took about two hours, for a total of 38.5 h. 
These skills required for this work were limited, and can 
be performed by anyone with basic spreadsheet skills, 
familiarity with Google Earth, an initial training in the 
Geo-Sampler tool, and sufficient familiarity with geo-
graphic coordinate systems.

The data collection field team initially consisted of two 
community nurses with licensed practical nurse (LPN)-
equivalent degrees and one supervisor with masters-level 
in nursing. While this level of training was necessary for 
our study to collect biologic samples and conduct inter-
views, advanced degrees are not necessary to use Geo-
Sampler outputs to identify households. Only familiarity 
with smartphone technology, map literacy, and Google 

Maps is required. A 2 day training and pilot exercise was 
sufficient to allow the data collectors to get started. Time 
between map generation and first data collection in the 
field was 2 days.

Data cleaning was conducted throughout the study by 
two people at a time, one of the coinvestigators (ACM) 
and the project coordinator (serially, ED LS, ET) with 
support from the PI (PR). All data cleaners and analysts 
had a Masters or PhD. Skill required for data cleaning 
include familiarity with excel, Redcap and Stata pro-
gramming. Calculation of sample weights after data 
cleaning took approximately 3 days. Calculation of sam-
ple weights involved sophisticated demography skills 
for devising the formulae, and strong MS excel skills to 
program the spreadsheets. Application of the sampling 

Table 3  Efficiencies and  challenges of  using Geo-Sampler tool and  protocols for  population-level data collection 
in Guatemala

Steps in sampling protocol Efficiencies Challenges and considerations for future work

1. Training of study staff on Geo-Sampler Tool Professional contacts facilitated access to Epicen-
tre staff

Currently, limited technical documentation
When available, technical documentation is in 

limited languages
Formal training on the tool is not currently available

2. Selecting samples and digitizing sampled 
structure coordinates

No special software required
Geo-Sampler tool using very up-to-date, high 

resolution imagery, so we were able to identify 
recently constructed structures

Sample can be selected at one time, by one 
person

Sample of structures behind walls can be easily 
selected

Geo-Sampler does not retain the list of selected 
structure coordinates after the program is shut 
down, which limits privacy concerns

Sample selection required significant expert time
If updated samples are needed, extra time from 

someone trained in the tool will be required, 
unless multiple people are trained

If multiple people are trained and are selecting the 
sample, significant coordination and oversight 
would be required to ensure quality control, con-
sistency, and to eliminate repetition of structures, 
unless adaptations are made to Geo-Sampler to 
allow for simultaneous use of multiple users

3. Locating selected structures in the field Use of the Android/Google Maps platform was 
intuitive and well-known to local study staff, 
cost-saving

Satellite overlay on Google Maps useful not 
only for finding tagged structures but also 
identifying principal entrances, alleyways, etc. 
when attempting to approach structures (many 
located in walled compounds, etc.)

Selecting structures rather than relying upon 
investigators’ concepts of what a “residence” 
looked like allowed us to include non-traditional 
living situations

Initial version of the Geo-Sampler tool provided.
kml files but without identifiable latitude and lon-
gitude, which then required a 2 stage process to 
determine. This was changed during the course of 
the study by Epicentre

Saved efficiencies of multi-stage sampling some-
what offset by inefficiency of inevitably many 
tagged structures not being residences.

This method does not allow for people who do not 
live in structures. People living on the street or in 
cars would still be left out of these surveys

A few coordinates selected were close enough that 
2 different structures were given the same study 
ID by different data collectors. This was discov-
ered and addressed in the data cleaning phase by 
recoding one of the residences of each pair

Connectivity in our sites in Guatemala was gener-
ally good, but we experienced frequent signal 
drop-outs, requiring large-format printed physical 
map back-up at all times. This would likely be the 
case in many LMIC settings, especially rural areas.

Drop-outs in connectivity also caused rapid 
phone battery drain (due to searching signal), 
and required staff to carry multiple recharging 
packets when in the field in order to keep phones 
charged
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and response weights to generate prevalence estimates 
required advanced Stata programming skills, but once 
the programs were created, they could be reused swiftly. 
Investigators on the team (ACM, DRT, PR) have strong 
excel skills, statistical programming software skills (Stata 
15), and/or advanced population health and demography 
skills.

Discussion
We have identified several advantages of this method 
over the more traditional methods of sampling frame 
enumeration in this area of Guatemala. The main advan-
tages are those of time, cost and statistical efficiency.

The traditional enumeration method of household cen-
sus or sending a mapping crew ahead of time to knock on 
doors is time-consuming and expensive. DHS suggests 
estimating 2 months for this phase in their field manu-
als [17], and another 2 months between household enu-
meration and data collection. In a smaller survey of 1600 
households in rural Madagascar, enumeration required 
20 days with 9 field teams, and another 24 days between 
enumeration and the initiation of data collection [18]. 
Our survey required a total of 1  week’s hours (38.5) of 
full-time work (across six non-consecutive weeks) by one 
person to generate the maps plus 1 week of training and 
2 days from beginning of sample selection to beginning 
of field time. In this area of Guatemala, many households 
are located behind privacy or security walls and residents 
may not admit enumeration crew to their homes, leav-
ing the crew to simply guess at the number of households 
behind the walls. This area of Guatemala is not heavily 
forested, so satellite imagery gives an excellent repre-
sentation of the structures available for sampling. Addi-
tionally, Geo-Sampler’s use of high-resolution satellite 
imagery captured within 6 months of the initiation of the 
field work provided a much more up-to-date source of 
data than typically used to select cluster surveys.

Furthermore, surveys which digitized all structures 
from satellite imagery as a sample frame required inti-
mate knowledge of the area including typical structures 
and living patterns to be able to produce a reasonable 
map of residential buildings in the area. The digitization 
process is quite time-consuming and relies on the two-
step process of first enumeration followed by selection. 
The Geo-Sampler method does not require digitizing all 
structures, and allows for simultaneous enumeration and 
selection, at a very rapid pace. Because each point in the 
polygon has an equal chance of being selected, and the 
user has the ability to select only points with a structure 
contained within the buffer as part of the sample, sta-
tistical correction for clustering is not required. In this 
lower-resource context, the absence of both (1) a recent 
national census and the corresponding updated sampling 

frame and (2) an updated accurate gridded population 
dataset, Geo-Sampler allowed us to select a simple ran-
dom sample of households from a random sample of 
structures, rather than a multi-stage clustered sample, 
which also enabled us to reduce our sample size and con-
duct the study with a reduced budget.

For our study, Geo-Sampler had certain advantages 
over some other available options. First, it provided us 
with a simple, user-operated sample selection, and unlike 
proprietary tools such as RTI’s Geosampling tool [17], 
Epicentre’s Geo-Sampler was free. Another advantage to 
Geo-Sampler is that the tool is preloaded with Google 
satellite imagery. Although there are other free options 
to select a simple random sample of structures, most 
rely on Volunteered Geographic Information (VGI) from 
OpenStreetMap which is generally derived from older 
and coarser Bing satellite images [18]. While the open 
access of these map databases is appealing and useful, 
debate about the data quality and level of bias inherent 
in these crowdsourced datasets continues [19, 20]. VGI 
mapping programs have historically been shown to have 
greater reporting and detail in urban areas with represen-
tation skewed toward high-income countries [21]. Some 
form of expert gate-keeping has been suggested as both 
a remedy for these possible inaccuracies, and a remedy 
for the perception of inaccuracies, which leads to mis-
trust of these free and open datasources [19]. However, 
as these free software programs continue to expand and 
grow, with heightened attention to measuring data qual-
ity [18, 22] the tradeoff between VGI and other systems 
will become less important.

Cost, however, can be a major barrier to the ability 
of researchers in LMICs to conduct their own popu-
lation-level surveys, especially in the absence of grant 
funding or partnerships with universities. This may rein-
force existing research inequities between low and high 
resourced settings. Our survey included the use of sev-
eral proprietary licensed programs that were available 
through universities, including the Microsoft packages 
and ArcGIS. Lower or no-cost programs exist that could 
be valid substitutes when resources are scarce, and if 
researchers do not have university partnerships to draw 
upon. However, tradeoffs may still need to be considered 
between cost and quality of tools, especially when con-
sidering open, crowdsourced programs.

This method does have some possible limitations when 
implemented. The areas of Guatemala in which the study 
was conducted vary greatly in terms of environment, cli-
mate, and wealth. However, they are similar in their lev-
els of arboreal cover and that most of the buildings are 
single family houses. Although a small proportion of the 
population in each site reside in apartment buildings or 
other multi-family dwellings, the vast majority of families 
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reside in single-family houses. These tools and protocols 
are well-suited to this scenario, but may be less applica-
ble to densely populated urban settings with multiple 
living units per structure. Despite the overall successful 
implementation of the protocols, our study team did face 
a few challenges in the use of the protocols during the 
field work. The study coordinator used a mobile device 
to identify a selected structure, visited it first to deter-
mine if it was actually a household, and if so, enrolled any 
eligible participants. The study nurses then followed up 
at a pre-arranged time to conduct study activities. On a 
few occasions, the randomly selected coordinates were 
close enough that two different structures were given 
the same study ID by different data collectors. This was 
discovered during the cleaning process and one of the 
households was reassigned to a different number. How-
ever, this was a time-consuming puzzle. Connectivity was 
also an issue; the data collectors experienced frequent 
signal drop-outs, and used a lot of battery life in search-
ing for connectivity. This issue will probably be applicable 
to other lower-resource settings as well, so use of navi-
gation applications that do not require internet connec-
tivity are recommended. We addressed this by providing 
large-format printed maps as a back-up. Harnessing the 
knowledge locally hired staff have of their neighbor-
hoods is also important, and including names of neigh-
borhoods was useful to support the ability of nurses to 
easily find houses. Although data collectors had extensive 
experience with smart phones, some study staff were less 
comfortable using both paper maps and the phone-based 
Google Maps. Despite these challenges, nurse data col-
lectors have been successfully able to locate and iden-
tify the selected households for inclusion into the study, 
replacing with others as necessary.

Although these methods provide a step forward in 
including non-traditional living arrangements (peo-
ple residing permanently or temporarily in businesses, 
religious institutions or other structures), they do not 
capture some of the most marginalized and vulnerable 
people in the population—the unhoused, street dwell-
ers or people living in vehicles. Some of the structures 
selected were in areas determined to be too dangerous to 
the safety of data collectors to enroll. Thus, there remains 
a group of community residents whose health indicators, 
perspectives and risks are invisible and undocumented. 
Further research on ways to include these most vulner-
able groups in population studies is needed.

Conclusion
In combination with our design protocols, the Epicentre 
Geo-Sampler tool provided a feasible, rapid and lower-
cost alternative to select a representative population sam-
ple for a prevalence survey in our setting.

Methods
Description of the main study and study area
This research is part of an National Institutes of Health 
R21-funded study (1R21TW010831-01) on chronic kid-
ney disease of unknown origin (CKDu), which emerged 
as a recent epidemic in Central America and other global 
sites in individuals without traditional CKD risk pro-
files (young, male, without diabetes or hypertension) 
[24]. The main objective of the study is to estimate the 
prevalence of both CKD and CKDu in two communities 
with different risk profiles. The study uses the infrastruc-
ture of the healthcare organization Wuqu’ Kawoq|Maya 
Health Alliance which has a long-standing presence in 
both study communities. Tecpán, Department of Chi-
maltenango (core population, excluding outlying settle-
ments, is approximately 84,000) is a majority indigenous 
Maya community in the temperate highlands of central 
Guatemala (elevation 7500 feet). San Antonio Suchite-
péquez, Department of Suchitepéquez (core popula-
tion is approximately 52,000) is a lowland Pacific coastal 
warm-climate town with larger non-indigenous popula-
tion (elevation 1000–1500 feet). The sites were chosen to 
provide a diversity of CKD risk factors, including differ-
ential exposure to heat stress and strenuous agricultural 
labor, profiles of pesticides in common use, diet diversity, 
risk for obesity and cardiovascular disease, and early life 
insults such as child malnutrition.

The prevalence survey was designed to be conducted 
through home visits by study nurses, consisting of an 
interview with any eligible household members (non-
pregnant adults who agree to participate and provide 
informed consent), biometric measurements using a bio-
impedance scale, urine samples to measure urine protein 
and creatinine, and serum samples to measure serum 
creatinine and glycosylated hemoglobin A1C. These test 
procedures allow for screening for diabetes and CKD and 
permit staging of any diagnosed CKD using Kidney Dis-
ease: Improving Global Outcomes(KDIGO) guidelines 
[25]. Positive results are returned to the participants by 
the study team along with confirmatory testing and a 
facilitated referral to public health or specialty clinics, as 
needed, for any follow-up care.
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Constructing the sampling frame and random sampling 
of structures and households
An a priori sample size calculation of 700 people from 
350 households was required to estimate the point 
prevalence of CKD with a margin of error of 0.35—220 
households from Tecpán and 130 from San Antonio 
Suchitepéquez—including inflation for refusals, house-
hold clustering in structures, and an expected prevalence 
of 10% [26].

Using ArcGIS 10.15.1, we created polygon shapefiles 
for Tecpán and San Antonio Suchitepéquez. Shapefiles 
were drawn to include the municipal boundaries of each 
town, with some expansion at the edges to include house-
holds when town boundaries cut through a tight group 
of structures. These maps were reviewed and approved 
by the co-investigators with knowledge of the area (PR, 
CM). We then imported the shapefiles into Geo-Sampler.

The Geo-Sampler tool (version 0.1.0.47 (2018-05-02)) 
interfaces with Google Earth and randomly selects points 
within a specified polygon shape, following a sampling 
with replacement technique. We set a buffer of 15  m 
around each sampling point, approximately the size of 
a lot in these regions of Guatemala, to reduce the num-
ber of points that needed to be selected and potentially 
dropped. Sample selection was performed beginning in 
April 2018 for Tecpán and May 2018 for San Antonio 
Suchitepéquez, and the imagery for both study sites in 
Google Earth was dated January 9, 2018.

One of the co-authors (ACM) selected and reviewed 
each point (with 15 m buffer) according to the following 
rules:

•	 If a structure existed within the buffer, the point 
was kept, and the structure within the buffer was 
included in the sample.

•	 If more than one structure existed within the buffer 
and the centroid point fell between them, the struc-
ture with any wall or corner nearest to the centroid 
point (based on visual estimation) was selected.

•	 If the closest structures were equidistant to the 
point (based on visual estimation), we selected the 
structure closest to 12:00, considering all structures 
in a clockwise fashion from 12:00.

•	 All sample structures were kept, regardless if they 
appeared to be non-residential, multi-family, or part 
of compounds (e.g., outdoor kitchen or privy).

•	 Additional points with 15  m buffers were selected 
until the target sample size was reached.

By using a buffer around points, points did not always 
fall directly over a structure. To record sampled struc-
ture locations, we used Google Earth (same 1/9/2018 
imagery) to manually digitize latitude and longitude 

coordinates for the sampled structures, and recorded 
these in a .xls spreadsheet file. Given potential structure 
abandonment and non-residential structures, an extra 
155 replacement structures were selected in Tecpán and 
145 replacement clusters were selected in San Antonio 
Suchitepéquez. At the end of each Geo-Sampling session, 
a .csv file of retained sample points, and .xls file of cor-
responding sampled structures’ latitude and longitude 
coordinates were saved. Because sampling with replace-
ment was used, each selected structure was compared 
with its nearest neighbors to be sure that the same struc-
ture was not included more than once.

Hard copy maps of each structure with a Google Earth 
base layer at a finer resolution were also provided to the 
data collectors for navigation.

Approaching household and calculating sampling weights
The protocol for approaching households was as follows: 
the data collectors were given a list of selected struc-
tures with coordinates and maps from the main sample 
(n = 220 in Tecpán, and n = 130 in Suchitepéquez) and 
separate lists of coordinates and maps of replacement 
structures. If the structure was a residence, the data col-
lectors initiated enrollment activities for a household. If 
the structure was not part of a residence, the data collec-
tors attempted to identify the nearest residence, turning 
in a clockwise circle on the street in front of the struc-
ture. If none of the structures in that circle were resi-
dences (or if there were no other structures), the data 
collectors made a note and a structure from the replace-
ment list was visited instead. If the structure was a resi-
dence that contained more than one household, a list 
of the households was made and one household was 
selected at random. For each household, queries outlined 
in Table 4 were collected in order to appropriately weight 
the survey results.

Sample weights were calculated as follows, using stra-
tum (city), structure and household response rates. Nota-
tion below uses k for strata, j for structures and i for 
households. 

where:wijk is the household weight. Gk is the total popu-
lation in stratum k (using estimated projections by the 
Guatemala National Institute of Statistics for the munici-
palities of Tecpán and San Antonio Suchitepéquez [27]). 
gk is the average household size in stratum k as estimated 
by Guatemala DHS 2014–2015 [28]. Mk is the number 
of target households in stratum k. Dijk is the number of 
households i enumerated in structure j in stratum k. dijk 
is the number of households i selected in structure j in 

wijk =

Dijk

dijk
× Tjik ×

Gk/gk

Mk
×

mk

mk∗
.
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stratum k. Tjik is the number of structures j in household 
i in stratum k. mk is the number of approached house-
holds in stratum k during fieldwork. mk* is the number of 
responded households in stratum k during fieldwork.

Pilot exercise
Prior to the initiation of formal data collection, a pilot 
was conducted with study data collectors to determine 
whether use of hand-held devices using readily avail-
able commercial GPS software (Google Maps) was 
feasible for data collectors following a brief training to 
identify households using latitude and longitude coor-
dinates. Other methods were also tested, including 
the use of a Garmin GPS device and printed copies of 
maps. The training took one afternoon and consisted 
of didactics and examples. The pilot consisted of field 
work with the 2 data collectors and the study coordina-
tor, who were given 10 structure coordinates to iden-
tify, and printed maps with the structures marked. 
Using their office-issued mobile Android phones (mod-
els Motorola MotoE4 Plus, Samsung Galaxy J3, Sam-
sung A10) the nurses programmed the coordinates into 
the phones and used the factory-installed directional 
navigation software to find the structures, with real-
time field assistance and as-needed support from one 
of the study investigators (PR). In this pilot, the study 
staff were able to program coordinates into the phones 
and easily find assigned structures, and so we elected 
to proceed with hand-held devices with Google Maps 
rather than other methods. This was cost-saving, as it 
was not necessary to purchase GPS devices. All staff 
were also already familiar with the use of Google Maps.
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Table 4  Data collected on each sampled structure

a  Including structures of multiple use (stores, churches, etc.) as long as also a residence
b  For example, selected structure might be the primary residence for the household, but there may also be a separate kitchen structure and garage structure for the 
same household

Query Possible Responses

Is the selected structure a residence?a Yes/No

How many associated structures are in use by the household? Number of structures and typeb

Does more than one household live in structure? Number of households in residence

Recruitment outcomes Number of households approached
Number of households with a contact
Number of households with at least one member 

recruited (“hh enrolled”)
Number of eligible adults in household and whether 

each individual was recruited or declined participa-
tion
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