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METHODOLOGY

Overcoming inefficiencies arising due 
to the impact of the modifiable areal unit 
problem on single‑aggregation disease maps
Matthew Tuson1,2, Matthew Yap1, Mei Ruu Kok1, Bryan Boruff3,4, Kevin Murray5, Alistair Vickery1, 
Berwin A. Turlach2 and David Whyatt1* 

Abstract 

Background:  In disease mapping, fine-resolution spatial health data are routinely aggregated for various reasons, for 
example to protect privacy. Usually, such aggregation occurs only once, resulting in ‘single-aggregation disease maps’ 
whose representation of the underlying data depends on the chosen set of aggregation units. This dependence is 
described by the modifiable areal unit problem (MAUP). Despite an extensive literature, in practice, the MAUP is rarely 
acknowledged, including in disease mapping. Further, despite single-aggregation disease maps being widely relied 
upon to guide distribution of healthcare resources, potential inefficiencies arising due to the impact of the MAUP on 
such maps have not previously been investigated.

Results:  We introduce the overlay aggregation method (OAM) for disease mapping. This method avoids depend-
ence on any single set of aggregate-level mapping units through incorporating information from many different sets. 
We characterise OAM as a novel smoothing technique and show how its use results in potentially dramatic improve-
ments in resource allocation efficiency over single-aggregation maps. We demonstrate these findings in a simulation 
context and through applying OAM to a real-world dataset: ischaemic stroke hospital admissions in Perth, Western 
Australia, in 2016.

Conclusions:  The ongoing, widespread lack of acknowledgement of the MAUP in disease mapping suggests that 
unawareness of its impact is extensive or that impact is underestimated. Routine implementation of OAM can help 
avoid resource allocation inefficiencies associated with this phenomenon. Our findings have immediate worldwide 
implications wherever single-aggregation disease maps are used to guide health policy planning and service delivery.

Keywords:  Disease mapping, Modifiable areal unit problem, Single-aggregation disease maps, Zonation-
dependence, Resource allocation efficiency
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Background
The practice of disease mapping is fundamental to public 
health [1], with disease maps currently being produced 
by healthcare organisations worldwide, including the 
World Health Organisation [2].

A fundamental function of a disease map is to guide 
geographically-prioritised resource allocation. As such, 
disease maps have been used to guide the spatial target-
ing of interventions to address HIV, cholera, Ebola, and 
malaria [3–11], for example. Disease maps have also been 
used to guide geographically-targeted responses to the 
current global COVID-19 pandemic. In Italy, for exam-
ple, mass COVID-19 testing in the town of Vo proved 
effective in identifying asymptomatic carriers of the 
virus, thereby limiting its further spread [12]. Similarly, in 
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Australia, geographically-localised testing has been car-
ried out in areas with elevated risk of community trans-
mission [13–15].

To evaluate a disease map’s utility for this purpose, 
consideration of its expected ‘efficiency’ is critical. In 
this context, efficiency has two key aspects: ‘targeting 
efficiency’ and ‘logistical efficiency’. The targeting effi-
ciency of a given map can be defined by the percentage of 
cases that could hypothetically be reached, or ‘intervened 
with’ through targeting a certain percentage of the study 
denominator (usually population). For example, a recent 
study describing the planned geographically-prioritised 
distribution of a limited supply of oral cholera vaccines 
in sub-Saharan Africa [8] proposed that regions with 
high rates of cholera be prioritised for distribution. On 
the other hand, the ‘logistical efficiency’ of a disease map 
can be represented by the number of distinct geographic 
‘target regions’. Since both intervention resources and the 
capacity of authorities to intervene are generally limited, 
it is essential to balance the targeting and logistical effi-
ciency of a given disease map.

In practice, disease maps are often produced at a sin-
gle, more-coarse resolution than that at which data 
were collected or made available (the ‘minimal’ resolu-
tion). This is in order to overcome issues associated with 
examining fine-resolution data, including: (i) violation 
of privacy, (ii) infeasible computation, and (iii) the small 
number problem, which manifests in unstable estimates 
of disease risk [16]. Since data underlying such maps are 
essentially an aggregation of minimal-resolution data, 
they can be termed ‘single-aggregation disease maps’. In 
Australia, for example, population data are obtainable 
by Statistical Areas Level 1 (SA1; mean population size 
approximately 400 residents [17]), but disease maps are 
usually produced by larger areas such as SA2 (between 
approximately 3,000 and 25,000 residents) or SA3 
(between approximately 30,000 and 130,000 residents) 
[18–20]. This is partly due to extensive ethical clearances 
limiting access to fine-resolution health data, and partly 
due to the ‘small-number’ issues listed above. Similarly, 
in the US and UK, for example, disease maps are often 
produced by either county or census ward, despite finer-
resolution data being obtainable [21, 22]. As a third 
example, the previously-cited study of cholera used a 
grid of 20 × 20 km units in preference to potentially finer-
resolution grids, in part due to computational constraints 
[8].

Unfortunately, single-aggregation disease maps are 
undermined through being dependent on the cho-
sen set of aggregate-level mapping units. This depend-
ence is described by the modifiable areal unit problem 
(MAUP). First described in the literature in 1934 [23], 
and coined in 1979 [24], the MAUP has since been widely 

investigated in geography, statistics, and elsewhere. In 
disease mapping, the MAUP describes how mapped val-
ues depend on both the scale of spatial aggregation (the 
scale aspect) and the position of boundaries between 
spatial units (the zonation aspect) [25]. These aspects 
manifest in various misleading phenomena; for example, 
disease clusters that are relatively small compared to the 
chosen units, or located where several units intersect, 
might not be detected.

Despite its extensive literature, in practice, the MAUP 
is rarely acknowledged, including in disease mapping. 
This is evidenced by a 2014 review, which noted that 
the MAUP was recognised in only 1% of papers using 
spatially aggregated data [26]. More recently, there is lit-
tle evidence to suggest acknowledgement of the MAUP 
has increased, with papers containing single-aggregation 
disease maps but not acknowledging the MAUP con-
stantly being published in top-ranked journals (e.g. see 
[27–29]). On the other hand, papers that do acknowl-
edge the MAUP often simply demonstrate how different 
results can be obtained through examining administra-
tive units at different scales (e.g. see [30]). This is consist-
ent with a general tendency of the literature to examine 
the MAUP’s scale aspect, as opposed to its zonation 
aspect [31]. While some association studies have exam-
ined the impact of the MAUP’s zonation aspect (e.g. see 
[24, 32, 33]), to our knowledge, no similar study exists in 
disease mapping. Further, as far as we are aware, no pre-
vious study has investigated the impact of the MAUP in 
the context of efficiency. Such an investigation is critically 
required, given ubiquitous reliance on single-aggregation 
disease maps to guide distribution of limited healthcare 
resources.

Therefore, we introduce the overlay aggregation 
method (OAM) for disease mapping. Extending a 
recently suggested approach [33], OAM combines many 
aggregate-level disease maps to derive a single, minimal-
resolution map. Using simulated data, we characterise 
OAM as both: i) a novel framework to systematically 
quantify the impact of the MAUP’s zonation aspect on 
single-aggregation disease maps, and ii) a novel smooth-
ing technique that overcomes both this impact and the 
small-number issues listed previously. We compare 
OAM to single-aggregation disease maps by their target-
ing and logistical efficiency, and demonstrate how OAM 
effectively balances those aspects. We then apply OAM 
to a real-world dataset: ischaemic stroke hospital admis-
sions (stroke) in Perth, Western Australia (WA), in 2016. 
Strokes require rapid intervention to avoid irreparable 
nerve tissue damage [34], necessitating ongoing con-
sideration of patients’ access to essential stroke services 
such as specialist hospital units or ambulance depots. 
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Understanding the spatial distribution of stroke sup-
ports this endeavour through guiding placement of such 
services.

Methods
Overlay Aggregation Method (OAM)
OAM comprises five steps:

1.	 Define the minimal units;
2.	 Set parameter values:

a.	 The number of aggregate-level maps; and
b.	 Their geographical scale of aggregation;

3.	 Create multiple sets of aggregate-level mapping 
units, or ‘zonations’;

4.	 Create aggregate-level disease maps based on those 
zonations; and

5.	 Combine the aggregate-level disease maps to pro-
duce a single, minimal-resolution map.

These steps are described in detail below.

Step 1. Define the minimal units
Since its first step involves specifying a set of minimal 
units, OAM operates in the same way as applied to either 
truly areal data (e.g. such as that often collected in sur-
veys) or data spatially aggregated from an original point 
location form. This specification will often be guided by 
data availability; in Australia, for example, SA1s might 
often be defined as the minimal units due to health data 
generally not being obtainable below that resolution. By 
contrast, if point location data were available, then mini-
mal units substantially smaller than SA1 (or their equiva-
lent in another country) could be defined.

Step 2. Set parameter values
The number of maps and their geographical scale of 
aggregation together govern the degree of smoothing 
in OAM’s output. We will show how one might choose 
an appropriate number of maps guided by observation 
of a minimal degree of change in OAM’s output as the 
number of maps is increased. By contrast, the choice of 
scale should be guided by the characteristics of a planned 
intervention (see Sect. Discussion).

Step 3. Create the aggregate‑level zonations
OAM’s zonations must completely segment the geo-
graphical study area. Following previous authors [32, 33], 
we show how suitable zonations can be created using the 
freely-available software AZTool [35, 36]. Briefly, AZTool 
operates by zoning a set of minimal units according to a 
target denominator size and potentially other constraints 

(e.g. minimum and maximum threshold denominator 
sizes). To create OAM’s zonations, only specification 
of target and minimum threshold denominator sizes is 
required.

Step 4. Create the aggregate‑level disease maps
Any model deemed appropriate by the user can be fitted 
to OAM’s zonations; OAM in no way advises the choice 
of model, since its focus is the appropriate preparation 
of available data, rather than its modelling. For the sim-
ulated dataset, we created crude rate maps for each of 
OAM’s zonations, while for stroke, we fitted the widely 
implemented Besag, York & Mollie (BYM) model [37, 
38]. The latter modelling was undertaken using the Inte-
grated Nested Laplace Approximation (INLA) approach 
[39], implemented in the R [40] package INLA (https​://
www.r-inla.org). INLA allows for approximate Bayesian 
inference in latent Gaussian models. For model formulae 
and R code, see [41].

Step 5. Combine the aggregate‑level disease maps
In this step, minimal unit values are derived through 
weighting the values of aggregate-level units in which 
they are comprised (one per zonation), using the formula:

where p indexes the set P of aggregate-level units com-
prising minimal unit m ; dm and dp are the denominator 
values for units m and p , respectively; vp is the value of 
unit p ; and vm is the denominator-weighted mean value 
derived for unit m . For both the simulation and stroke, dm 
and dp are population sizes. For the simulation, vp is the 
crude rate of unit p and vm is the population-weighted 
mean crude rate of unit m . For stroke, vp is the estimated 
relative risk (RR) of unit p and vm is the population-
weighted mean RR of unit m.

Equation  (1) is undefined for minimal units with zero 
denominator values. Therefore, to maintain the smooth 
appearance of the final map, dm can be cancelled in 
Eq. (1) to give:

where all parameters are as defined previously. Equa-
tion (2) will output positive values for minimal units with 
zero denominators and identical values to Eq.  (1) oth-
erwise. All OAM results presented below were derived 
using Eq. (2).

(1)vm =

∑

p∈P

[

dm
dp

× vp

]

∑

p∈P

[

dm
dp

]

(2)vm =

∑

p∈P

[

1

dp
× vp

]

∑

p∈P

[

1

dp

]

https://www.r-inla.org
https://www.r-inla.org
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Simulation
A point location dataset of 100 disease cases was gener-
ated through specifying a spatially-correlated random 
field and assigning cases across that field according to a 
multinomial probability distribution. We suppose that 
population size is the denominator of interest, with pop-
ulation data available at the resolution of a 100 × 100 unit 
grid where each cell has a population size of one. Thus, 
the total population size is 10,000. We define a 20 × 20 
unit grid to be the set of minimal units; thus, each mini-
mal unit has a population size of 25. Note: population 
size is defined to be the denominator due to this being 
the most common situation in practice; however, other 
denominators, e.g. geographical area, could be used.

We produced three maps of the simulated dataset:

i)	 A minimal-resolution map of crude rates;
ii)	 A single-aggregation map of crude rates, based on a 

5 × 5 unit grid (population size: 400 per unit); and
iii)	A minimal-resolution map of population-weighted 

mean crude rates, using OAM.

We used AZTool to create 100 aggregate-level zona-
tions for OAM, based on target and minimum threshold 
population sizes of 400 and 300, respectively. The former 
value was chosen in order that the single-aggregation and 
OAM maps be comparable.

Stroke
Study area
2016 Australian Census SA boundaries for Perth were 
obtained from the Australian Bureau of Statistics (ABS). 
Perth was defined to comprise the four Greater Perth 
SA4s: ‘Perth—Inner’, ‘Perth—South East’, Perth—South 
West’, ‘Perth—North East’, and ‘Perth—North West’, 
excluding two single-SA1 islands: Rottnest Island and 
Garden Island. The latter were excluded due to Rottnest 
Island operating primarily as a tourist and day-trip desti-
nation and Garden Island housing the Australian Navy’s 
largest fleet base. Sets of minimal and single-aggregation 
units were defined to be SA1 and SA2, respectively.

Outcome data
Stroke records for Perth in 2016 were extracted from 
the WA Hospital Morbidity Data Collection (HMDC) 
[42] and aggregated by SA1. Following [43], we defined 
stroke admissions to be those with a principal Interna-
tional Statistical Classification of Diseases and Related 
Health Problems, tenth revision, Australian Modification 
(ICD-10-AM) [44] diagnosis of I63 (Cerebral infarction), 
I64 (Stroke, not specified as haemorrhage or infarction), 
or H34.1 (Central retinal artery occlusion). In total, 3,534 
stroke admissions were extracted for WA, of which 11 

(0.3%) were excluded due to not having an SA1 of resi-
dential address recorded. A further 996 were excluded 
due to occurring among individuals residing outside of 
Perth (i.e. in regional WA), and of the remaining admis-
sions, four (0.2%) were excluded due to occurring in SA1s 
with zero population sizes as reported by the ABS. Thus, 
a total of 2,523 admissions were available for analysis.

Population data
Population data for the 2016 Australian Census were 
extracted from the ABS, stratified by SA1.

Analysis
Mirroring the simulation analysis, we produced:

i)	 An SA1-resolution map of RRs;
ii)	 An SA2-resolution map of RRs; and
iii)	An SA1-resolution map of population-weighted 

mean RRs, using OAM.

We again used AZTool to create 100 aggregate zona-
tions for OAM, based on target and minimum threshold 
population sizes of 11,250 and 9,000, respectively. The 
former value was chosen to approximately match the 
mean population size of SA2s (11,256). Across all zona-
tions, the median number of SA1s per aggregate unit was 
26 (95% quantile interval: 18–33).

Efficiency
For both the simulation and stroke, we compared maps 
by their:

i)	 ‘Targeting efficiency curves’;
ii)	 ‘Targeting efficiency maps’;
iii)	‘Logistical efficiency curves’; and,
iv)	For exemplar ‘target case percentages’, ‘logistical effi-

ciency maps’.

These outputs are described in detail below.

Targeting efficiency curves
The targeting efficiency curve for a given disease map 
plots the cumulative percentage of the denominator 
‘targeted’ against the cumulative percentage of cases 
reached. It is created through ‘targeting’ the mapping 
units by their values, in descending order.

Targeting efficiency maps
A targeting efficiency map is a spatial representation of 
a targeting efficiency curve. In such maps, units are col-
oured according to the cumulative percentage of cases 
they collectively contain, following their target order.
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Logistical efficiency curves
A logistical efficiency curve plots the number of discon-
tiguous regions requiring targeting to reach different 
target case percentages (i.e. cumulative percentages of 
cases). For both the simulation and stroke, discontiguity 
was determined using rook adjacency.

Logistical efficiency maps
A logistical efficiency map displays the target regions 
associated with a particular target case percentage. It 
is essentially a dichotomised version of a targeting effi-
ciency map. We created logistical efficiency maps for the 

simulation and stroke based on exemplar target case per-
centages of 50% and 15%, respectively.

Results
Minimal‑resolution analysis of the simulated dataset
Figure 1a maps the simulated disease case locations and 
the minimal units. The cases are broadly grouped in a 
vertical band to the right of centre of the study area, with 
variations in grouping within that band.

Figure 1b shows the minimal-resolution disease map of 
crude rates.

Fig. 1  Minimal-resolution efficiency results for the simulated dataset. a Simulated point location disease cases with the minimal units overlaid (grey 
squares). b Minimal-resolution disease map of crude rates. c Targeting efficiency map associated with b. d Logistical efficiency map based on a 
target case percentage of 50%
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Figure  2a shows the targeting efficiency curve associ-
ated with Fig. 1b. This curve indicates that 50% of cases 
could hypothetically be reached through targeting just 23 
minimal units, or 5.8% of the population (Table 1). 

Figure  1c shows the targeting efficiency map corre-
sponding to Fig. 2a. In this map, the 23 units noted above 
are coloured blue-to-light blue.

Figure  2b shows the logistical efficiency curve associ-
ated with Fig. 1c. This curve indicates that a maximum of 
33 regions require targeting to reach any target case per-
centage (this was for a target case percentage of 100%).

Finally, Fig. 1d shows the logistical efficiency map asso-
ciated with the target case percentage of 50%. It shows 
that the 23 units noted above form 13 discontiguous 
regions (Table  1). Note: the legend indicates that ≥50% 
of cases are contained within those regions, since, in gen-
eral, a larger percentage of cases than the specified target 
might be contained within the regions requiring targeting 
to reach it. In Fig.  1d the target regions contain exactly 
50% of cases, so the ≥ symbol is for illustration only.

Single‑aggregation analysis of the simulated dataset
Figure 3a maps the simulated disease case locations and 
the single-aggregation units. Figure 3b shows the single-
aggregation map of crude rates; Fig. 2a the single-aggre-
gation targeting efficiency curve; Fig.  3c the targeting 
efficiency map; Fig. 2b the logistical efficiency curve; and 
Fig.  3d the logistical efficiency map based on the target 
case percentage of 50%. Figure 2 demonstrates decreased 
targeting efficiency but increased logistical efficiency for 
the single-aggregation strategy compared to the min-
imal-resolution result. For example, using the single-
aggregation strategy, 50% of cases could hypothetically be 

reached through targeting 20% of the population within 
two discontiguous regions (Table 1).

OAM analysis of the simulated dataset
Clearly, a trade-off exists between the targeting and 
logistical aspects of efficiency. A minimal-resolution 
strategy will always maximise targeting efficiency, but 
at the expense of logistical efficiency. This is the impact 
of the small number problem. Further, while computa-
tional expense is not presently an issue, privacy is likely 
to be violated by the presentation of rates based on small 
numbers in Fig. 1b. The single-aggregation strategy over-
comes these issues, but at the expense of targeting effi-
ciency. This is the impact of the MAUP. Thus, a targeting 
strategy is needed that balances the targeting and logisti-
cal aspects of efficiency; here, we demonstrate how OAM 
constitutes such a strategy.

Figures 4a–c show three of OAM’s 100 zonations, and 
Figs. 4d–f crude rate maps based on those zonations. Fig-
ure 4g shows the minimal-resolution map of population-
weighted mean crude rates produced using OAM.

Fig. 2  Targeting and logistical efficiency curves for different mapping strategies applied to the simulated dataset. a Targeting efficiency curves. b 
Logistical efficiency curves. Curves are shown for the minimal-resolution (Min.); single-aggregation (Agg.); and OAM targeting strategies

Table 1  Exact efficiency data for the simulation

Shown are cumulative percentage of population targeted and number of target 
regions values associated with a target case percentage of 50%, for the minimal-
resolution (‘Min.’); single-aggregation (‘Agg.’) and OAM targeting strategies.

Mapping method Cum. % of population 
targeted

Number 
of target 
regions

Min 5.8 13

OAM 12.5 3

Agg 20 2
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Figure  2a shows the targeting efficiency curve associ-
ated with Fig.  4g. The curve lies between the minimal-
resolution and single-aggregation curves, illustrating 
how OAM compromises between those strategies with 
respect to targeting efficiency. For example, using OAM, 
50% of cases could hypothetically be reached through 
targeting 12.5% of the population (Table 1).

Figure  4h and Fig.  2b show OAM’s targeting effi-
ciency map and logistical efficiency curve, respectively. 
The latter indicates comparable or somewhat decreased 
logistical efficiency for OAM as compared to the single-
aggregation strategy. For example, using OAM, three 

discontiguous target regions contain the 12.5% of the 
population noted above (Table  1). These regions are 
mapped in Fig. 4i.

Sensitivity to key parameter values
To investigate OAM’s sensitivity to the number and 
set of zonations, we created nine additional sets of 100 
zonations using AZTool and applied OAM to each. 
This analysis is described in Additional file  1: ‘Addi-
tional results’ (section ‘Sensitivity to key parameter val-
ues’). Minimal differences in efficiency were observed 
between zonation sets and as the number of zonations 

Fig. 3  Single-aggregation efficiency results for the simulated dataset. a Simulated point location disease cases with the single-aggregation units 
overlaid (large grey squares). b Single-aggregation disease map of crude rates. c Targeting efficiency map associated with b. d Logistical efficiency 
map based on a target case percentage of 50%
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approached 100, suggesting that the choice of zona-
tion set is relatively immaterial and that 100 zonations 
is sufficient to mask idiosyncrasies of particular zona-
tions, at least for the simulated dataset examined here.

OAM as a smoothing technique
Figure  4g has the appearance of being a smooth, albeit 
relatively grainy surface. This effect derives from the 

effective  creation of spatial smoothing kernels within 
OAM, characterised by distance decay in the sense that, 
in the zoning process, nearby units are generally grouped 
more often than those more distant. Additional file  1: 
‘Additional results’ (section ‘Effective smoothing kernels’) 
illustrates this phenomenon, showing effective smooth-
ing kernels created for two minimal units. Thus, OAM 
can be characterised as a smoothing technique, with the 

Fig. 4  OAM efficiency results for the simulated dataset. a–c Three of OAM’s zonations. d–f Crude rate disease maps based on a–c. g Map of 
population-weighted mean crude rates produced using OAM. h Targeting efficiency map associated with g. i Logistical efficiency map based on a 
target case percentage of 50%
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degree of smoothing governed by the target denominator 
size and the number of zonations. This is demonstrated 
in Additional file  1: ‘Additional results’ (section ‘OAM 
as a smoothing technique’), where we apply OAM to the 
simulated dataset based on target population sizes of 100, 
200, 400, and 800.

Comparison to existing smoothing techniques
Characterisation of OAM as a smoothing technique sug-
gests comparison to existing smoothing techniques. As 
an example, we derived a smoothed map of the simulated 
dataset using a kernel-smoothed spatial density technique 
implemented in the R package sparr [41, 45]. Specifically, we 
used the bivariate.density function in that package. Details 
of this analysis are provided in Additional file 1: ‘Additional 
results’ (section ‘Comparison to existing smoothing tech-
niques’). At two different resolutions, maps produced using 
the bivariate.density function and their associated efficiency 
were markedly similar to those of OAM.

Global and local zonation dependence
OAM’s incorporation of multiple single-aggregation dis-
ease maps uniquely facilitates investigation of the impact 
of the MAUP’s zonation aspect on such maps. To illus-
trate, in each of OAM’s component maps, we classify 
as hotspots those units whose lower crude rate confi-
dence bounds exceed the overall rate of 0.01. Confidence 
bounds for each unit were derived using the pois.exact 
function implemented in the R package epitools [46], 
based on a confidence level of 64%. However, both the 
method used to derive confidence bounds and the choice 
of confidence level are relatively immaterial, since they 
do not affect the map ultimately produced using OAM or 
its associated efficiency (see Additional file 1: ‘Additional 
results’ (section ‘Justification of the zonation-dependence 
confidence level’)). As a rule of thumb, we suggest choos-
ing a confidence interval such that the hotspot counts 
derived below range  between zero and 100, i.e. the full 
dynamic range for that quantity.

Figures  5a–c show hotspots classified based on 
Figs.  4d–f. Clearly, different hotspots are detected in 
each map, demonstrating how single-aggregation maps 
are unreliable for planning purposes. Following [34], but 
implementing a variation of Eq. (5) in that paper, such dif-
ferences can be quantified between all pairs of zonations 
by the average probability that a minimal unit appearing 
in a hotspot in any given zonation will not appear simi-
larly in another. This value measures the global ‘zonation-
dependence’ of single-aggregation hotspots. To calculate 
it, consider that, for minimal units appearing in hotspots 
in a given zonation zi , the probability of not appearing in 
a hotspot in a new, different zonation zj can be calculated 
as: 

Then, for any given minimal unit appearing in a hot-
spot in a particular zonation zi , the average probability 
p.|i of that unit not appearing in a hotspot in another, dif-
ferent zonation may be calculated as the mean of pj|i over 
all j  = i . The mean of values p.|i may then be presented 
with its associated uncertainty represented by the 2.5% 
and 97.5% quantiles of the distribution of all values p.|i . 
Using Eq. (3), we calculated an average zonation-depend-
ence probability of 0.41 (95% quantile interval: 0.34–0.5) 
for the simulated dataset. This suggests that hotspots 
classified in single-aggregation disease maps of that data-
set are moderately zonation-dependent.

To characterise local zonation dependence, again fol-
lowing [34], we derived a minimal-resolution ‘hotspot 
count’. This value records the number of zonations in 
which a given minimal unit appears in a hotspot. It is cal-
culated as:

where parameters m , p , and P are as defined previ-
ously; HSp is an indicator variable recording whether or 
not unit p was a hotspot in its zonation; and HSCm is the 
hotspot count derived for unit m . Figure  5d shows the 
hotspot count map for the simulated dataset.

The classification as hotspots (or non-hotspots) of 
minimal units with hotspot counts equal to zero or 100 
is zonation independent, i.e. independent of the aggre-
gate-level zonation used. By contrast, the classification 
of minimal units with hotspot counts between one and 
99 is, to varying degrees, zonation dependent. Exploring 
this, we define ‘zonation-dependent negatives’ (ZDNs) 
to be minimal units classified as hotspots in most (i.e. 
≥ 80), but not all zonations. Using this threshold, there 
were 26 ZDNs. Similarly, we define ‘zonation-dependent 
positives’ (ZDPs) to be minimal units appearing in hot-
spots in at least one, but relatively few (i.e. ≤ 20) zona-
tions. Using this threshold, there were 139 ZDPs. Both 
ZDPs and ZDNs should disturb policymakers, since they 
effectively represent relatively zonation-independent hot-
spot or non-hotspot regions that might not be classified 
as such due to idiosyncrasies of particular single-aggrega-
tion disease maps. Illustrating the potential extent of this 
problem, 41.3% of minimal units were classified as either 
ZDPs or ZDNs.

Note: the ≥ 80 and ≤ 20 thresholds used above are 
arbitrary. Depending on the situation, different thresh-
olds might be appropriate; for example, classification 
of both ZDPs and ZDNs using a threshold of 50 would 
result in a discussion of regions classified as hotspots (or 

(3)

pj|i =
num. min. units in hotspots in zonation zi but not zonation zj

num. min. units in hotspots in zonation zi

(4)HSCm =
∑

p∈P

[

HSp
]
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non-hotspots) in the majority of zonations, rather than in 
most.

Stroke
Figure  6a maps the 4,248 SA1s and 164 SA2s in Perth, 
and Fig.  6b Perth’s 2016 population density by SA2. 
Perth’s population, which in 2016 was 1.85 million, strad-
dles the Swan and Canning Rivers inland and sprawls 
north to south along the coastline.

SA1 and SA2 maps of stroke RR are not shown in order 
to maintain a manageable figure list. However, Fig.  7 
shows the map of population-weighted mean RRs pro-
duced using OAM. Note: values in this map have been 

perturbed by a small amount to further protect privacy. 
Several regions with high weighted RRs are observed, in 
particular two regions located on the southern coastline 
and inland in the south-east.

Figures 8a-b show the targeting and logistical efficiency 
curves for the SA1, SA2, and OAM targeting strate-
gies. Consistent with previous results, the SA1 strategy 
had optimal targeting efficiency but poor logistical effi-
ciency; for example, 15% of cases could hypothetically be 
reached through targeting 1.4% of the population within 
63 discontiguous regions (Table 2). By contrast, the SA2 
strategy was characterised by decreased targeting effi-
ciency but increased logistical efficiency compared to 

Fig. 5  Hotspot analysis results for the simulated dataset. a–c Hotspots classified based on Figs. 4d–f. d Minimal-resolution map of hotspot counts
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the SA1 result (Fig. 8). For example, 15% of cases could 
be hypothetically be reached through targeting 8.6% of 
the population within 11 discontiguous regions (Table 2). 
Finally, OAM balanced targeting and logistical efficiency 
(Fig. 8); using OAM, to hypothetically reach 15% of cases, 
5.9% of the population would need to be targeted within 
15 discontiguous regions (Table  2). Figures  9a–c show 
the logistical efficiency maps corresponding to the target 
case percentage of 15%, for the three strategies.  

Figures  10a–c show hotspots classified among SA2s 
and in two of OAM’s zonations. Here, following the rule 
of thumb proposed previously, hotspots were defined to 
be those areas whose lower 81% credible interval bounds 
exceeded 1. As for the simulated dataset, different hot-
spots are detected in each map in Figs. 10a–c, reinforcing 
the previous conclusion that single-aggregation disease 
maps are unreliable for planning purposes. We calculated 
a global probability of zonation-dependence of 0.52 (95% 
quantile interval: 0.48–0.56); this suggests that, on aver-
age, a hotspot in a given single-aggregation disease map 

of stroke will, as often as not, not be similarly classified in 
a different map of the same data.

Figure  10d maps the SA1 hotspot counts for stroke. 
Applying the same thresholds used previously (i.e. ≥ 80 
and ≤ 20), we classified 133 stroke ZDNs and 1,823 stroke 
ZDPs. Together, these regions comprised almost half 
(46%) of the entire study area.

Finally, to explore the impact on efficiency of imple-
menting a complex model versus no model within OAM, 
Additional file 1: ‘Additional results’ (section ‘Crude rate 
analysis of stroke’) describes a crude rate analysis of 
stroke. As might be expected, regardless of the targeting 
strategy (i.e. SA1, SA2, or OAM), the crude rate analy-
sis was characterised by increased targeting efficiency 
but decreased logistical efficiency compared to the BYM 
model analysis. This is due to the additional smoothing 
of the underlying data that occurs when using the BYM 
model.

Fig. 6  Administrative geography and population density of Perth in 2016. a SA1 and SA2 boundaries. b SA2-resolution population density
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Discussion
We have introduced OAM and demonstrated its utility 
in efficiently mapping the geographical distribution of 
stroke in Perth in 2016. OAM identified several regions 

with high risk of stroke, in particular two regions located 
on Perth’s southern coastline and inland in the south-
east. In planning interventions, these regions might be 
considered alongside information such as proximity to 
specialist stroke units or ambulance depots. An exam-
ple intervention might be the deployment of mobile 
stroke units, such as has occurred in some cities in recent 
years [47]. However, it is not within scope for this paper 
to advocate or evaluate the feasibility of any particular 
intervention.

Perhaps most critically, we have demonstrated how 
the classification of hotspots (or non-hotspots) in single-
aggregation disease maps may depend on the particular 
aggregate-level zonation used. Therefore, no result in 
any single-aggregation map is reliable. OAM constitutes 
a novel framework to quantify this phenomenon and 
describe its local effects. However, we note the extent of 
the problem is likely to vary by case. Where disease clus-
ters are larger than the chosen mapping units, agreement 
between single-aggregation maps based on different, but 
similarly sized units is likely to be high. An example of 
this might be the mapping of under-5 mortality in sub-
Saharan Africa using a grid of 5 × 5 km units [48]. In that 
study, regions with high mortality rates were generally 
large compared to the chosen units; therefore, it is likely 
that different configurations of the chosen  grid would 
have identified approximately similar high-rate regions. 
By contrast, where disease clusters are smaller than the 
chosen units, agreement between single-aggregation 
maps based on alternative configurations of those units 
is likely to be lower. An example of this might be the 
previously-cited study of cholera in sub-Saharan Africa 
[8], where many of the classified hotspots were relatively 

Fig. 7  Map of population-weighted mean RRs for stroke

Fig. 8  Targeting and logistical efficiency curves for stroke. a Targeting efficiency curves. b Logistical efficiency curves. Curves shown correspond to 
maps produced by SA1; SA2; or using OAM
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punctate. Therefore, it is likely that different configura-
tions of the grid of 20 × 20 km units would have identified 
quite different hotspots. Future work should investigate 
potential differences in zonation dependence between 
datasets, as alluded to above.

Further, we have demonstrated how the impact of the 
MAUP on single-aggregation disease maps manifests in 
substantially reduced targeting efficiency due to prioriti-
sation of logistical efficiency. This should disturb policy-
makers, given the generally scarce nature of healthcare 
resources. OAM’s second function as a smoothing tech-
nique represents a solution, with maps produced using 
OAM balancing the two aspects of efficiency. However, 
in demonstrating this, we have shown how OAM’s out-
put is strikingly similar to that of at least one existing 
smoothing technique applied to minimal-resolution data. 
Therefore, beyond the fact that such techniques have not 
previously considered efficiency as defined here, below 

we outline the key features differentiating them from 
OAM.

Most notably, OAM facilitates derivation of smoothed, 
minimal-resolution estimates without directly modelling 
minimal-resolution data. This is achieved through mod-
els being fitted only to aggregate-level data, a generally 
less prohibitive task than would be their direct applica-
tion to minimal-resolution data. Thus, more complex 
models than could otherwise be fitted can be applied 
within OAM; for example models including covariates 
or fully Bayesian models. To our knowledge, this feature 
is unique in the literature, with the exception of certain 
interpolation techniques that allow for derivation of esti-
mates below the resolution at which data are available 
(e.g. see [49]). However, unlike OAM, such techniques 
are potentially undermined by the ecological fallacy, a 
problem related to, but distinct from, the MAUP.

Where both OAM and an alternative smoothing 
technique could be implemented, it might still be more 
advantageous to implement OAM, for these reasons: 
first, OAM uniquely accounts for edge effects. In contrast 
to existing smoothing techniques, which account for edge 
effects through implementing various corrections (e.g. 
see [45]), OAM does so through its effective smooth-
ing kernels naturally adapting to the study area bound-
ary and other borders. Second, OAM could be extended 
to model spatiotemporal data. This might involve simply 
examining its zonations at multiple time points. By con-
trast, not all existing smoothing techniques can model 
spatiotemporal data. Third, OAM stabilises population 

Table 2  Exact efficiency data for stroke

Shown are cumulative percentage of population targeted and number of target 
regions values associated with a target case percentage of 15%, for the SA1, SA2, 
and OAM targeting strategies.

Mapping method Cum. % of population 
targeted

Number 
of target 
regions

SA1 1.4 63

OAM 5.9 15

SA2 8.6 11

Fig. 9  Logistical efficiency maps for stroke based on a target case percentage of 15%. a SA1 map. b SA2 map. c OAM map
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sizes between spatial units. Additional file 1: ‘Additional 
results’ (section ‘Stabilisation of population sizes’) dem-
onstrates this, showing the distribution of population 

sizes among SA1s, SA2s, and units within OAM’s zona-
tions in the stroke analysis. In this attribute, OAM is 
unique from most existing smoothing techniques, with 

Fig. 10  Hotspot analysis results for stroke. a SA2 hotspots. b, c Hotspots based on two of OAM’s zonations. d SA1-resolution hotspot counts
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the exception of some kernel-smoothing approaches that 
implement adaptive bandwidths (e.g. see [50]). How-
ever, those techniques are often limited in their ability to 
additionally examine covariates or spatiotemporal data. 
Further, it has been noted that they might be computa-
tionally expensive even for moderately-sized datasets 
[51]. Finally, OAM protects patient privacy, since the 
process of combining information from multiple single-
aggregation disease maps constitutes a geographical 
encryption key. To back-calculate data input into OAM 
would require: (i) extracting the values displayed in a 
given map; (ii) reversing their perturbation; and (iii) iden-
tifying a set of zonations and distribution of cases which, 
when modelled, exactly reproduce the unperturbed val-
ues. These steps constitute a complex deconvolution 
problem, almost certainly without a unique solution. 
Accordingly, some minimal-resolution values could be 
reported, since this would negligibly reduce the problem’s 
complexity.

Importantly, we note that the impact of the MAUP 
described, quantified and overcome by OAM is that of 
its zonation aspect arising due to aggregation beyond the 
minimal resolution. OAM does not overcome the cor-
responding impact of the MAUP’s scale aspect; rather, 
we have simply demonstrated that an increased scale of 
aggregation within OAM results in increased smooth-
ing. This is unavoidable, and also characterises the out-
put of other smoothing techniques. In addition, OAM 
does not assess the impact of the MAUP as manifesting 
due to aggregation by the minimal unit in the first place. 
That impact is also unavoidable when producing a dis-
ease map, since to do so the study area must be discre-
tised in some way. Within OAM, this occurs when data 
are aggregated by the minimal units. By comparison, ker-
nel-smoothing algorithms usually display information by 
a fine-resolution grid. As another example, spatial point 
process models often approximate a continuous spatial 
intensity surface at a fine, grid-based resolution, or in a 
more complex manner through applying basis functions 
across a triangulated mesh [42]. As a third possibility, 
discretisation might occur as a final step, i.e. post-model-
ling, purely for the purpose of producing a map.

It could be argued that the examination of multiple 
different zonations within OAM ignores the inherent 
importance or meaningfulness of pre-defined adminis-
trative areas. This view is correct in certain aspects; for 
example, funding to address disease is often distributed 
based on local government areas, health districts, or hos-
pital catchments. Further, certain interventions are best 
targeted by administrative boundaries. For example, at 
the time of writing,  some regions in Victoria, Australia 
had  recently re-entered ‘lockdown’ to address a second 
wave of COVID-19 [15]. The impending lockdown was 

communicated to residents through reference to post-
code boundaries, and it is likely that any other approach 
would have caused confusion. However, this reality 
should not preclude the situation where interventions to 
address disease are targeted to regions potentially over-
lapping different administrative units. Since intervention 
resources are invariably scarce, as a general rule, disease 
should be mapped as it is distributed, and funding or 
other intervention measures adapted to this distribution 
to most effectively and efficiently address it, not the other 
way around.

The scale of aggregation within OAM parallels the 
choice of a smoothing bandwidth in some other smooth-
ing techniques. There is a rich literature devoted to 
evaluating various data-based or theoretical techniques 
of bandwidth selection for such methods (e.g. see [52]). 
Future work might investigate application of these tech-
niques within OAM. In the meantime, we suggest users 
choose an appropriate scale of aggregation guided by 
the characteristics of a planned intervention. For exam-
ple, a relatively fine scale might be appropriate when 
planning a highly localised intervention, since this will 
result in delineation of increasingly punctate and dis-
contiguous target regions. However, such an approach 
will potentially be limited by computational constraints 
and the relative rareness of the disease being examined 
(rare conditions will generally require a greater degree of 
aggregation).

There is potential to extend OAM to incorporate sta-
tistical measures of uncertainty (e.g. confidence inter-
vals) for its map output. Since this functionality is not 
currently included, OAM cannot be used to statistically 
classify hotspots, such as is often desired in practice to 
characterise inequality between geographical regions. 
This was intentional, since our focus has been to demon-
strate OAM’s utility in delineating target regions charac-
terised by their efficiency, and compare this efficiency to 
that of single-aggregation maps. While future work might 
extend OAM to enable classification of hotspots, it would 
not be sensible to quantify uncertainty in OAM’s effi-
ciency output, since, by definition, that output is directly 
associated with a given observed dataset.

While AZTool is a useful, free software, it is not an 
essential component of OAM; OAM’s zonations could 
be created using any one of several available zonation 
tools, many of them automated. Such tools have become 
increasingly available in recent years, though they are not 
always free. Alternatively, custom computer code could 
be written. Future work might investigate the potential 
impact of implementing OAM using zonations created 
using different software.

Our presentation of OAM in the first instance as 
applied to a point location dataset generalises our 
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findings beyond the specific set of administrative units 
in the stroke application. Essentially, it is unimportant 
whether the minimal and aggregate-level units are poly-
gons (e.g. administrative units) or grid cells. For the 
simulation, the minimal units were grid cells while the 
aggregate-level units were polygons. By contrast, for 
stroke, both the minimal and aggregate-level units were 
administrative units. As a third possibility, only aggre-
gate-level information might be available, but for multiple 
zonations. In that case, a minimal-resolution value could 
still be derived using OAM, simply through implement-
ing its fourth and fifth steps. Future work might investi-
gate the exact way in which such a procedure might be 
implemented.

As a final point, we consider another disease mapping 
method commonly applied to both point location and 
areal disease data: spatial scans [53]. As an example, we 
consider the popular method SaTScan [54, 55]. Within 
SaTScan, scanning windows of different sizes that are 
usually circular are evaluated across a given geographi-
cal study area, with the aim of identifying one or more 
‘likely’ clusters. Our interest is to compare such output 
to that of OAM in the context of efficiency. As such, we 
note that spatial scans differ from the smoothing tech-
niques described above in that they cannot output mini-
mal-resolution values; rather, values associated with each 
window are output. Thus, it is not clear how such output 
might be used to calculate targeting and logistical effi-
ciency. Key to doing so would be effective management 
of the overlapping windows. Future work might usefully 
investigate different strategies to achieve this.

Conclusions
In conclusion, we have demonstrated how pronounced 
inefficiencies could result from reliance on single-aggre-
gation disease maps to guide distribution of healthcare 
resources. Routine implementation of OAM can help 
prevent this. We hope that this paper will be a catalyst for 
increased awareness and acknowledgement of the MAUP 
in disease mapping and beyond. As a first step, studies 
examining areal data, both within and beyond the con-
text of disease mapping, should routinely acknowledge 
the MAUP as a limiting feature whenever it is impossible 
to explicitly address its impact.
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