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Abstract 

Background:  Although previous research has highlighted the association between the built environment and 
individual health, methodological challenges in assessing the built environment remain. In particular, many research‑
ers have demonstrated the high inter-rater reliability of assessing large or objective built environment features and 
the low inter-rater reliability of assessing small or subjective built environment features using Google Street View. New 
methods for auditing the built environment must be evaluated to understand if there are alternative tools through 
which researchers can assess all types of built environment features with high agreement. This paper investigates 
measures of inter-rater reliability of GigaPan®, a tool that assists with capturing high-definition panoramic images, 
relative to Google Street View.

Methods:  Street segments (n = 614) in Pittsburgh, Pennsylvania in the United States were randomly selected to audit 
using GigaPan® and Google Street View. Each audit assessed features related to land use, traffic and safety, and public 
amenities. Inter-rater reliability statistics, including percent agreement, Cohen’s kappa, and the prevalence-adjusted 
bias-adjusted kappa (PABAK) were calculated for 106 street segments that were coded by two, different, human 
auditors.

Results:  Most large-scale, objective features (e.g. bus stop presence or stop sign presence) demonstrated at least 
substantial inter-rater reliability for both methods, but significant differences emerged across finely detailed features 
(e.g. trash) and features at segment endpoints (e.g. sidewalk continuity). After adjusting for the effects of bias and 
prevalence, the inter-rater reliability estimates were consistently higher for almost all built environment features across 
GigaPan® and Google Street View.

Conclusion:  GigaPan® is a reliable, alternative audit tool to Google Street View for studying the built environment. 
GigaPan® may be particularly well-suited for built environment projects with study settings in areas where Google 
Street View imagery is nonexistent or updated infrequently. The potential for enhanced, detailed imagery using Giga‑
Pan® will be most beneficial in studies in which current, time sensitive data are needed or microscale built environ‑
ment features would be challenging to see in Google Street View. Furthermore, to better understand the effects of 
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Background
Research has shown a connection between the built envi-
ronment (BE) where people live, work, and play and their 
physical, social, and mental health. A systematic review 
of the built environment and cardio-metabolic health 
found strong evidence of the association between the BE 
and a person’s physical health [1]. Leyden [2] found living 
in walkable, mixed-use neighborhoods was associated 
with greater social capital including a greater likelihood 
of trusting other people, getting to know neighbors, and 
involvement in one’s community. Urban neighborhood 
BE characteristics such as housing quality, exposure to 
greenspace, and other environmental conditions are also 
associated with psychological distress [3]. Although the 
body of evidence supporting the connection between the 
BE and health continues to grow, studying the BE contin-
ues to present unique methodological challenges.

In-person direct observation (DO) has been considered 
the gold standard when auditing features of the micro-
scale BE [4]. The microscale environment is defined as 
built and social environment features representing neigh-
borhood characteristics or details that are smaller in scale 
and are generally more likely to change over time with 
fewer costs [5]. This includes street-level environmental 
features like housing characteristics, sidewalk presence 
and conditions, street lighting, traffic control character-
istics, intersection features, tree coverage, curb charac-
teristics, graffiti, and trash. Similar to other researchers, 
we classify some microscale features as “finely detailed” 
[6]. This refers to features that are visually fine as a whole 
(e.g. presence of garbage, litter, or broken glass, presence 
of broken windows or bars on windows). Although DO 
is the gold standard in assessing the microscale envi-
ronment, using DO can be costly and time intensive 
depending on the location and the size of the area being 
observed [7]. These limitations are especially problematic 
when the areas of interest are geographically dispersed 
across various political or administrative divisions (e.g. 
states, provinces, prefectures) or countries.

Google Street View (GSV) has been used as a reli-
able tool to observe the microscale BE and is a cheaper 
alternative to DO [6, 8]. GSV provides an individual with 
a panoramic, 360° view from a selected street, with the 
ability to move along the street on a computer and adjust 
zoom settings. While GSV has been used reliably to study 
BE features, it has also presented its own set of limita-
tions. This includes limitations that are dependent upon 

the method used to assess features in the GSV imagery 
(e.g. human auditors vs. deep-learning technologies) and 
limitations that are relevant regardless of the method 
used. In one study that used human auditors to code fea-
tures in GSV imagery, reliability was not as high when 
considering finely detailed features, such as the presence 
of litter, or when recording qualitative observations, such 
as the quality of sidewalk or housing [6]. Using human 
auditors to assess streetscape characteristics can also be 
subjective and costly for large-scale studies [9].

Deep-learning technologies have advanced our abilities 
to widely and objectively assess street features by mak-
ing use of the pixels in GSV imagery. Studies have used 
machine learning to parse pixels of GSV imagery into dif-
ferent categories (e.g., sky, trees, and buildings) to gener-
ate very precise estimates of features [9, 10]. For example, 
Yin and Wang [9] generated the proportion of sky in GSV 
images and found it was negatively correlated with pedes-
trian activity and walkability. Researchers have also used 
GSV and a combination of other 2D and 3D data sources 
to make 3D GIS models and examine microscale urban 
design characteristics related to physical activity and 
pedestrian behavior [11]. Building 3D GIS models allows 
the user to interactively assess details of the streetscape 
from many angles, points, or locations [11]. Therefore, 
these models may improve researchers’ abilities to objec-
tively assess features of the urban streetscape. 3D GIS 
models can be built using open source software and there 
have been many advances in procedural modeling, com-
puter vision, and photogrammetry that make this process 
easier [11]. However, the application of these principles 
requires knowledge of artificial intelligence (e.g., machine 
learning, computer vision) and the computational skills 
and capacity to implement them.

Furthermore, although GSV is available for various 
cities throughout the world, GSV imagery is not avail-
able for every street in many countries, including many 
developed countries [12]. In the United States (USA), 
imagery is updated irregularly, with urban areas tend-
ing to have more complete coverage and more frequent 
updates than rural areas [6]. These limitations could 
prove problematic for studies in which the imagery date 
is crucial to the study’s aims, for studies across vary-
ing levels of urbanicity/rurality, or for studies in coun-
tries with sparse imagery availability. Another problem 
unique to GSV is the variation in imagery dates on a 
single street segment. As the auditor navigates the 

prevalence and bias in future reliability studies, researchers should consider using PABAK to supplement or expand 
upon Cohen’s kappa findings.
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street in GSV, the latest imagery available may vary for 
different portions of the segment. It can be challenging 
to control for this variation; and therefore, the fluctu-
ating dates have the potential to introduce error into 
an audit that is meant to represent the BE at a specific 
point in time [13].

Using GigaPan® to audit the BE is one potential solu-
tion to some of the shortcomings of using GSV or DO 
for BE audits. GigaPan® is a tool that assists in cap-
turing high-definition panoramic images, and its use 
auditing the BE is underexplored. More specifically, 
GigaPan® is a robotic camera mount that can be used 
with most digital single-lens reflex cameras to capture 
panoramas composed of billions of pixels. After plac-
ing a camera on the GigaPan® apparatus, the GigaPan® 
apparatus is then attached to a tripod to allow for ease 
of use and to improve the vantage point. The Giga-
Pan® mount maneuvers the camera to take hundreds to 
thousands of photographs of the designated area. Then, 
the images are uploaded and are stitched together using 
the GigaPan® Stitch Software that is downloaded onto 
a computer. This results in a detailed, enhanced pano-
rama with increased zoom and improved resolution. 
Compared to GSV, GigaPan® allows for greater control 
of the temporal aspect of capturing and using images in 
real time as the researcher is responsible for deciding 
when and where images are taken. GigaPan® has been 
used for rangeland monitoring of natural resources in 
ecological studies, for analyzing the community struc-
ture of ants in Costa Rica, and by the National Aero-
nautics and Space Administration for planetary analog 
field experiments [14–16].

In recent research, our study team examined the 
reliability of GigaPan® as a method for assessing park 
characteristics, as well as the validity of using Giga-
Pan® to measure park attributes in comparison to GSV 
and DO [17]. This research showed GigaPan® was a 
reliable method for collecting data on park attributes 
and a comparably valid method to GSV and DO [17]. 
Research by our study team also documented the valid-
ity of GigaPan® imagery in assessing street segment 
BE attributes [18]. Using DO as the gold standard, our 
findings for street segments showed GigaPan® audits 
obtained comparably valid results relative to GSV [18]. 
However, the reliability of using GigaPan® to document 
street segment BE characteristics has yet to be estab-
lished. We hypothesized GigaPan® may be better suited 
for measuring microscale BE features compared to 
GSV. Given the potential benefits of using GigaPan® to 
capture the BE, this study seeks to ascertain and com-
pare the inter-rater reliability (IRR) of BE constructs 
coded by multiple, human auditors using GigaPan® and 
GSV imagery.

Methods
Study sample
This study is an extension of the Pittsburgh Hill/Home-
wood Neighborhood Change and Health (PHRESH) 
study. The PHRESH study is led by RAND with the Uni-
versity of Michigan as a collaborator. It is an ongoing 
community-focused research study examining connec-
tions between features of the built and social environ-
ment and health in two, low-income neighborhoods (the 
Hill District and Homewood) in Pittsburgh, Pennsyl-
vania, USA whose residents are predominately African 
American. Additional details regarding neighborhood 
selection can be found elsewhere [19]. This GigaPan® and 
GSV ancillary study was led by the University of Michi-
gan to document street-scale features using GigaPan® 
that could be associated with walking, physical activity, 
and obesity. Briefly, RAND collected and electronically 
stitched the images to complete the GigaPan® panora-
mas, while the University of Michigan used human audi-
tors to audit the GigaPan® panoramas, the GSV imagery, 
and analyze the data.

To assess the street environments in these two neigh-
borhoods, a random sample of 614 unique street seg-
ments, approximately 25% of the street segments in each 
of the two neighborhoods, were audited. Of the 614 street 
segments, 20% (n = 124) were randomly selected, coded 
by two raters, and included in this study of IRR. Thus, the 
reliability sample represents both neighborhoods: Home-
wood and the Hill District. All selected street segments 
were audited using GSV imagery and GigaPan® imagery. 
Both types of imagery were coded by human auditors 
who reviewed the imagery and determined the presence, 
quality, or quantity of a BE feature along the streetscape. 
Details regarding image capture and coding are described 
below.

Capturing street imagery using GigaPan®

RAND field staff recruited and trained neighborhood 
residents of Pittsburgh, Pennsylvania to capture images 
of the selected street segments using the GigaPan® appa-
ratus. Before entering the field, staff completed training 
that required them to read the GigaPan® manual, watch a 
demonstrational video on the use of the GigaPan® appa-
ratus, and take practice photos to become comfortable 
using the GigaPan® equipment.

The GigaPan® apparatus is a camera mount consist-
ing of a panoramic tripod head that holds and stabilizes 
a digital camera of the user’s choice. In this study, we 
mounted a Canon® PowerShot S120 camera onto the 
GigaPan® Epic apparatus and secured it on a tripod (see 
Fig. 1). With the camera secured on the tripod, the user 
aimed the device to the upper-left corner and lower-right 
corner to set the boundaries of the area they wanted to 
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capture. The built-in software of the GigaPan® apparatus 
then computed the number of images needed to com-
plete the panorama. Next, the user pressed the shutter-
release button and the apparatus captured the individual 
images which were later assembled into a larger pano-
ramic image using the GigaPan® Stitch Software on a 
computer.

RAND field staff took a GigaPan® panorama for both 
sides of the selected street segments. After the images 
were taken, RAND used the GigaPan® Stitch Soft-
ware to electronically stitch the individual images into 
a high-resolution panorama. A resulting panoramic 
image for a non-study location can be seen in Fig.  2. 
The panoramic GigaPan® photos were then sent to the 
University of Michigan so that trained, human auditors 
could code various BE features identified within each 
panoramic photo.

Fig. 1  Canon PowerShot® S120 camera mounted on the GigaPan® Epic and secured on a tripod

Fig. 2  A GigaPan® panorama for a non-study street segment in Ann Arbor, Michigan, USA. The panorama is the result of many smaller images that 
were stitched together electronically using the GigaPan® Stitch Software. The individual images composing the panorama were captured by a 
Canon® PowerShot S120 mounted on a GigaPan® Epic that was secured on a tripod. The number of pixels in this image was reduced dramatically 
to meet journal file size requirements. Additional interactive photos shared by other users of GigaPan® can be accessed on the GigaPan® website 
via URL [20]
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Coding the GSV and GigaPan® imagery
University of Michigan auditors performed GSV audits 
using Google Earth Pro version 7.3. All study street seg-
ments were saved in the form of KMZ files for use in 
Google Earth. Each street segment had a unique segment 
ID that served as the identifier. Example GSV imagery 
corresponding to the non-study street segment shown in 
Fig. 2 can be accessed via URL [21]. To document street-
scale features that could be associated with walking, 
physical activity, and obesity, the University of Michigan 
auditors coded the GSV imagery and GigaPan® imagery 
separately using a modified, electronic version of the 
Bridging the Gap Community Measures Project (BTG-
COMP) auditing tool [22]. This tool is formally known 
as the BTG-COMP Street Segment Observation Form 
and was designed to assess neighborhood street-level 
features related to physical activity. Based on previous 
pilot study research that used in-person DO as the audit-
ing method, the tool had good reliability [23]. Additional 
details regarding the selection of the measures included 
in the tool can be found elsewhere [23]. In brief, a socio-
ecological framework guided the overall development of 
the original BTG-COMP auditing tool, and empirical lit-
erature and an expert panel were used to identify features 
of the neighborhood environment associated with physi-
cal activity. The tool focused on features that could not 
be assessed using available national data. Moreover, our 
study team made modifications to the original tool to fit 
the local context of the two neighborhoods we audited. 
For example, we added a question about the slope of 
the segment because the Hill District and Homewood 
neighborhoods are hilly and the steepness of the street 
segments was expected to be related to neighborhood 
residents’ physical activity behaviors. We also devel-
oped a modified coding manual to include the new items 
which was used as the basis for training auditors before 
they began auditing street segments using GigaPan® and 
GSV imagery.

The training process for coding both types of imagery 
consisted of reviewing the coding manual as a group, 
reading the manual individually, experimenting with GSV 
and GigaPan® technology, and then completing multiple 
practice audits with both GigaPan® imagery and GSV 
imagery. Practice audits used locations in various urban 
cities of the USA that were outside of the study area. 
The locations were selected to help the auditors become 
familiar with coding features and amenities expected to 
be seen in Pittsburgh, Pennsylvania. During training, 
weekly meetings were held to discuss coding discrep-
ancies within the group. Eighty percent agreement or 
higher was needed to be certified as an auditor, which 
was calculated between each auditor’s coded answers and 
the lab manager.

After training was complete, coding of the 614 unique 
street segments for both GSV and GigaPan® began. Two 
independent, trained auditors double-coded a random 
sample of the 614 street segments. One hundred twenty-
four street segments served as the reliability sample for 
this study. The same street segment was coded by two 
different auditors for both GSV and GigaPan® audits. 
All GSV imagery was the most current imagery available 
at the time audits were completed. GSV imagery dates 
ranged from July 2007 to September 2016, while Giga-
Pan® photos were taken from September 2015 to Decem-
ber 2015. The majority of GSV audits were completed 
using imagery from 2016.

Quality control
Prior to analysis, we evaluated the accuracy and quality 
of GigaPan® and GSV imagery for each of the randomly-
selected reliability segments. Eighteen segments were 
dropped from the analysis sample. Among the 18 seg-
ments, 13 were dropped for having GigaPan® imagery or 
collection issues, one segment was dropped for having a 
GSV imagery or collection issue, and four segments were 
dropped for having both GigaPan® and GSV imagery 
and/or collection issues. Dropped segments had at least 
one issue. The GSV imagery issues included the follow-
ing: poor image quality, the incorrect cross street was 
used, the segment analyzed was not a street, the imagery 
was incomplete, or the street view imagery did not exist 
for the segment. The GigaPan® imagery issues included 
the following: the imagery file could not be opened, the 
image only covered a small fraction of the segment, or 
the image was taken in the wrong location. The resulting 
reliability analysis sample included 106 segments with 
complete imagery for GigaPan® and GSV.

In order to estimate the prevalence, features with three 
response options were recoded into two categories, with 
“1” indicating presence of the feature on one or both sides 
of the street and “0” indicating absence of the feature. The 
prevalence of each feature was then estimated. Features 
with a prevalence below 0.10 in either the GigaPan® or 
GSV sample were excluded from the analysis given the 
poor performance of Cohen’s kappa and the prevalence-
adjusted bias-adjusted kappa (PABAK) when prevalence 
of a feature is extremely low [24–26]. After eliminating 
those features with a prevalence below 0.10, 28 features 
were retained for the analysis. We collapsed the 28 fea-
tures into three concepts: land use, traffic and safety, 
and public amenities. Table 1 outlines each concept, the 
features comprising each concept, the question used to 
assess the feature, and the original response options. In 
general, land use includes features of residential build-
ings, nonresidential buildings, tree coverage, and seg-
ment slope. Traffic and safety includes sidewalk presence, 
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sidewalk continuity, sidewalk buffers, traffic lighting, 
street and sidewalk lighting, crosswalk presence, curbs, 
and lane attributes. Public amenities includes transit fea-
tures, trash maintenance, aesthetics, sidewalk condition, 
and perceived safety.

Statistical analysis
Average prevalence (PR) was calculated for each fea-
ture. In this study, this statistic represents the propor-
tion of street segments containing the feature of interest. 

Percent agreement (PA), Cohen’s kappa, and PABAK 
were also calculated for each feature with valid GigaPan® 
and GSV audit data. Although prevalence was estimated 
using the dichotomized versions of each of the features, 
the reliability statistics (PA, Cohen’s kappa, and PABAK) 
were estimated using the original response options. The 
PA represents the total number of segments for which 
the two auditors selected the same response option (e.g., 
both auditors agreed the feature was present or both 
auditors agreed the feature was absent for the segment) 

Table 1  The 28 features retained for reliability analysis after dropping features with a prevalence below 0.10

Ten features were retained in the land use concept, 11 features in the traffic and safety concept, and seven features in the public amenities concept

Feature Question asked on coding form Response options on coding form

Land use concept

Detached housing Scan both sides of the street for the presence of: 
detached housing

No, Yes on One Side, or Yes on Both Sides [of the street]

Institutional buildings Scan both sides of the street for the presence of: institu‑
tional buildings

No, Yes on One Side, Yes on Both Sides [of the street]

Broken or boarded windows Are there any broken/boarded windows? No, Yes

Attached housing Scan both sides of the street for the presence of: 
attached housing

No, Yes on One Side, Yes on Both Sides [of the street]

Trees that shade sidewalk Do trees shade sidewalk? None/Few, Some, Many

Amount of street trees How many street trees are there? None/Few, Some, Many

Bars on the windows Are there any bars on windows? No, Yes

Slope of the segment What is the slope of the segment? Flat, Slight Hill, Steep Hill

Vacant building or lot Scan both sides of the street for the presence of: vacant 
building or lot

No, Yes on One Side, Yes on Both Sides [of the street]

Housing apartments Scan both sides of the street for the presence of: housing 
apartments

No, Yes on One Side, Yes on Both Sides [of the street]

Traffic and safety concept

Stop sign Is there a stop sign? No, Yes

Sidewalk Is there any sidewalk? No, Yes on One Side, Yes on Both Sides [of the street]

Marked crosswalk Is there a marked crosswalk? No, Yes

Traffic light Is there a traffic light? No, Yes

Curb Is there any curb? No, Yes on One Side, Yes on Both Sides [of the street]

Number of traffic lanes Number of lanes of vehicular traffic [Open Response]

Street or sidewalk lighting Is there any street or sidewalk lighting? No, Yes on One Side, Yes on Both Sides [of the street]

Continuous sidewalk Is there any continuous sidewalk? No, Yes on One Side, Yes on Both Sides [of the street]

Street and sidewalk buffer Is there a street and sidewalk buffer? No, Yes on One Side, Yes on Both Sides [of the street]

Continuous sidewalk on both ends Is there any continuous sidewalk at both ends between 
segments?

No, Yes on One Side, Yes on Both Sides [of the street]

Missing curb cuts at crossing Are there any curb cuts or ramps missing at crossing 
points?

No, Yes on One Side, Yes on Both Sides [of the street]

Public amenities concept

Bus stop Is there a bus stop? No, Yes

Public trash can Is there a public trash can? No, Yes

Perceived safety of segment How safe do you feel walking on this segment? Unsafe/Not Very Safe, Pretty Safe/Very Safe

Overall condition of sidewalk What is the overall condition of the sidewalk? Poor, Moderate, Good, Under Repair

Garden, flower bed, or planter Is there a garden, flower bed, or planter? No, Yes

Amount of trash on street What is the amount of trash/litter on the street? None, A Little, Some, A Lot

Attractiveness for walking Overall, how attractive would you rate this segment for 
walking?

Unattractive, Neutral, Attractive
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divided by the total number of segments audited. This is 
then converted to a percentage to get the PA. The PA is 
a direct measure rather than an estimate; and therefore, 
confidence intervals (CI) are not needed [27]. The short-
coming of this statistic is that it does not account for the 
possibility that some agreement would be due to chance 
[27]. Thus, Cohen’s kappa is a measure of agreement that 
corrects for agreement due to chance [28]. Although 
Cohen’s kappa is the primary IRR statistic used in 
research, it can be affected by bias between auditors and 
the level of prevalence of the feature being observed [24]. 
Therefore, PABAK was also calculated. PABAK is a kappa 
statistic that accounts for prevalence and bias by holding 
prevalence constant at 0.50. Cohen’s kappa and PABAK 
values are most similar when prevalence is close to 0.50. 
Additionally, PABAK is not recommended in instances of 
extremely low prevalence. However, by eliminating varia-
bles where the prevalence was below 0.10, we were able to 
overcome this limitation [26]. Cohen’s kappa and PABAK 
are both estimated statistics with ranges from − 1 to + 1. 
A value of + 1 represents perfect agreement, a value of 
0 represents agreement due to chance, and a value of 
− 1 represents perfect disagreement. The scale used for 
assessing the level of IRR based on Cohen’s kappa and 
PABAK values is widely used in reliability literature and 
is as follows: poor (< 0.00), slight (0.00–0.20), fair (0.21–
0.40), moderate (0.41–0.60), substantial (0.61–0.80), 
and almost perfect (0.81–1.0) [29]. As noted by Landis 
and Koch, the divisions/ranges are arbitrary but provide 
useful benchmarks for discussion, and the nomencla-
ture also provides consistency for describing the rela-
tive strength of agreement [29]. For each BE feature, CIs 
were also calculated for Cohen’s kappa and PABAK given 
both statistics are estimates of the reliability based on the 
sample and the CIs provide a range of likely values for 
the estimate. The CIs were evaluated to determine differ-
ences between the two audit methods. Non-overlapping 
confidence intervals represented a statistically significant 
difference. All analyses were conducted using Stata ver-
sion 14.2.

Results
Across the three BE concepts (land use, traffic and safety, 
and public amenities), some features had missing data 
and some features were only relevant if another feature 
was present. Five features were only relevant if another 
feature was present and thus followed skip logic to ensure 
they were not audited. For example, the audit tool ques-
tion ascertaining the continuity of the sidewalk was only 
answered if the auditor indicated a sidewalk was present. 
If a sidewalk was not marked as present, the continuous 
sidewalk question was not answered. After taking into 

account missing data and skip logic, sample sizes ranged 
from 79 to 106.

Overall when using GSV, eleven of the 28 BE features 
had Cohen’s kappa values in the substantial to almost 
perfect reliability range (the presence of: detached hous-
ing, institutional land use, a stop sign, a sidewalk, a 
marked crosswalk, a traffic light, a continuous sidewalk, 
a continuous sidewalk (both ends), a bus stop, and a pub-
lic trash can; the number of traffic lanes), 12 features had 
kappa values in the fair to moderate reliability range (the 
presence of: broken/boarded windows, attached hous-
ing, trees that shade the sidewalk, bars on the windows, 
a vacant building/lot, housing apartments, a curb, street 
or sidewalk lighting, a street and sidewalk buffer, and a 
garden, flower bed, or planter; the amount of street trees; 
the slope of the segment), and five features had kappa val-
ues within the poor to slight reliability range (the absence 
of curb cuts at a crossing; the perceived safety of the seg-
ment; the overall condition of the sidewalk; the amount 
of trash on the street, and attractiveness for walking). On 
the other hand, GigaPan® had seven BE features within 
the substantial to almost perfect reliability range (the 
presence of: a stop sign, a sidewalk, a marked crosswalk, 
a traffic light, a curb, and a bus stop; the number of traf-
fic lanes), 16 features within the fair to moderate reliabil-
ity range (the presence of: detached housing, institutional 
land use, broken/boarded windows, attached housing, 
trees that shade the sidewalk, bars on the windows, street 
or sidewalk lighting, a continuous sidewalk, a street and 
sidewalk buffer, a continuous sidewalk (both ends), a pub-
lic trash can, and a garden, flower bed, or planter; the 
amount of street trees; the perceived safety of the segment; 
the overall condition of the sidewalk; the amount of trash 
on the street), and five features within the poor to slight 
reliability range (the presence of: a vacant building/lot, 
housing apartments; the slope of the segment, the absence 
of curb cuts at a crossing; the attractiveness for walking).

After adjusting for the effects of bias and prevalence, 
GSV and GigaPan® had more features in the upper reli-
ability ranges. GSV had 16 BE features with PABAK val-
ues in the substantial to almost perfect reliability range 
(the presence of: detached housing, institutional land use, 
attached housing, bars on the windows, housing apart-
ments, a stop sign, a sidewalk, a marked crosswalk, a traf-
fic light, a continuous sidewalk, a continuous sidewalk 
(both ends), a bus stop, and a public trash can; the slope 
of the segment; the number of traffic lanes; the absence of 
curb cuts at a crossing), eight features in the fair to mod-
erate reliability range (the presence of: trees that shade the 
sidewalk, a vacant building/lot, a curb, street or sidewalk 
lighting, a street and sidewalk buffer, and a garden, flower 
bed, or planter; the amount of street trees; the absence 
of curb cuts at a crossing), and four features in the poor 
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to slight reliability range (the perceived safety of the seg-
ment; the overall condition of the sidewalk; the amount of 
trash on the street; the attractiveness for walking). Using 
GSV, 17 features had PABAK values in the substantial to 
almost perfect reliability range (the presence of: institu-
tional land use, broken/boarded windows, attached hous-
ing, trees that shade the sidewalk, housing apartments, a 
stop sign, a sidewalk, a marked crosswalk, a traffic light, a 
curb, street or sidewalk lighting, a continuous sidewalk, a 
street and sidewalk buffer; slope of the segment, a bus stop, 
and a public trash can; the number of traffic lanes) and 11 
features had PABAK values in the fair to moderate reli-
ability range (the presence of: detached housing, bars on 
the windows, a vacant building/lot, a continuous sidewalk 
(both ends), and the presence of a garden, flower bed, or 
planter; amount of street trees; the absence of curb cuts at 
a crossing; the perceived safety of the segment; the over-
all condition of the sidewalk; the amount of trash on the 
street; the attractiveness for walking). None of the features 
assessed with GigaPan® had PABAK values in the poor to 
slight reliability range. The PA ranged from 27% (attrac-
tiveness for walking) to 98% (presence of a street light) 
using GSV, while the PA ranged from 47% (attractive-
ness for walking) to 95% (presence of a bus stop) using 
GigaPan®. The PA values were consistently higher than 
Cohen’s kappa and PABAK values. Reliabilities across the 
three broad concepts (i.e., land use, traffic and safety, and 
public amenities) were varied, as described below.

GigaPan®

None of the ten land use features (presence of detached 
housing, presence of institutional land use, presence of 
broken/boarded windows, presence of attached housing, 
presence of trees that shade the sidewalk, the amount of 

street trees, presence of bards on the windows, the slope of 
the segment, the presence of a vacant building/lot, pres-
ence of housing apartments) evaluated using GigaPan® 
reached the substantial to almost perfect agreement 
range based on Cohen’s kappa (Table 2). However, pres-
ence of broken/boarded windows, presence of attached 
housing, presence of housing apartments, presence of 
trees that shade the sidewalk, and the slope of the seg-
ment had PABAK reliability values in the substantial 
range and presence of institutional land use had a PABAK 
value in the almost perfect range.

Six of the eleven traffic and safety features (presence of 
a stop sign, presence of a sidewalk, presence of a marked 
crosswalk, presence of a traffic light, presence of a curb, the 
number of traffic lanes) had substantial to almost perfect 
agreement according to Cohen’s kappa (Table  3). Pres-
ence of a traffic light, presence of a curb, and the number 
of traffic lanes had Cohen’s kappa reliability values in the 
substantial range. Presence of a stop sign, presence of a 
sidewalk, and presence of a marked crosswalk fell into the 
almost perfect reliability range. Using PABAK, presence 
of a curb and the number of traffic lanes remained in the 
substantial range, while the presence of a traffic light was 
measured with almost perfect agreement. Moreover, the 
presence of street or sidewalk lighting, the presence of 
a continuous sidewalk, and the presence of a street and 
sidewalk buffer could be measured with substantial reli-
ability according to PABAK. Presence of a stop sign, pres-
ence of a sidewalk, and presence of a marked crosswalk 
had almost perfect agreement for both Cohen’s kappa 
and PABAK.

The assessments of the seven public amenities (pres-
ence of a bus stop, presence of a public trash can, the per-
ceived safety of the segment, the overall condition of the 

Table 2  Land use features for street segments

PR average prevalence, PA percent agreement, GP GigaPan®, GSV Google Street View, CI confidence interval, PABAK prevalence-adjusted bias-adjusted kappa. An 
* denotes the variable was dichotomous. All other variables not denoted with * were recoded to be dichotomous solely when calculating prevalence. Significant 
differences across audit tools are italicized.

Features N PR PA Cohen’s kappa PABAK

GP GSV GP (%) GSV (%) GP 95% CI GSV 95% CI GP 95% CI GSV 95% CI

Detached housing 106 0.50 0.59 74 76 0.58 [0.44, 0.71] 0.64 [0.52, 0.77] 0.60 [0.48, 0.73] 0.65 [0.52, 0.77]

Institutional 106 0.13 0.18 90 91 0.54 [0.30, 0.79] 0.69 [0.52, 0.87] 0.84 [0.76, 0.93] 0.86 [0.77, 0.94]

Broken/boarded windows* 105 0.22 0.35 81 80 0.45 [0.25, 0.65] 0.56 [0.39, 0.73] 0.62 [0.47, 0.77] 0.60 [0.44, 0.76]

Attached housing 105 0.20 0.30 80 77 0.41 [0.21, 0.60] 0.50 [0.38, 0.58] 0.70 [0.58, 0.82] 0.66 [0.53, 0.78]

Trees that shade sidewalk 105 0.17 0.32 82 67 0.37 [0.17, 0.57] 0.31 [0.17, 0.46] 0.73 [0.62, 0.84] 0.50 [0.36, 0.64]

Amount of street trees 106 0.38 0.45 63 59 0.33 [0.18, 0.48] 0.33 [0.20, 0.47] 0.45 [0.31, 0.59] 0.39 [0.25, 0.53]

Bars on the windows* 105 0.19 0.20 76 82 0.26 [0.08, 0.45] 0.43 [0.22, 0.64] 0.52 [0.36, 0.69] 0.64 [0.49, 0.79]

Slope of the segment 106 0.17 0.14 75 83 0.19 [0.01, 0.38] 0.30 [0.09, 0.52] 0.63 [0.51, 0.76] 0.75 [0.64, 0.85]

Vacant building/Lot 106 0.30 0.45 58 57 0.13 [0.06, 0.27] 0.25 [0.10, 0.40] 0.38 [0.23, 0.52] 0.35 [0.21, 0.49]

Housing apartments 106 0.16 0.20 75 75 0.15 [−0.02, 0.33] 0.24 [0.06, 0.41] 0.63 [0.51, 0.76] 0.62 [0.49, 0.74]
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sidewalk, the presence of a garden, flower bed, or planter, 
the amount of trash on the street, and the attractiveness 
for walking) were similar for both reliability statistics 
(Table 4). The presence of a bus stop was the only public 
amenity measured with substantial reliability. This fea-
ture was measured with almost perfect reliability after 
adjusting for the effects of bias and prevalence. In addi-
tion, using PABAK, the presence of a public trash can 
was measured with substantial reliability. All other pub-
lic amenities were measured with slight, fair, or moderate 
reliability using Cohen’s kappa and PABAK.

GSV
Presence of detached housing and the presence of insti-
tutional land use were measured with substantial agree-
ment using GSV (Table 2). Presence of housing remained 
in the substantial range, while the presence of institu-
tional land use was measured with almost perfect reli-
ability, using PABAK. Presence of attached housing, 
presence of bars on windows, street slope, and presence 
of apartments also had substantial agreement based on 
PABAK.

Across all three BE concepts, the traffic and safety con-
cept had the greatest number features in the substantial 
to almost perfect agreement range (Table 3). Presence of 
a sidewalk, presence of a marked crosswalk, number of 
traffic lanes, presence of a continuous sidewalk, and pres-
ence of a continuous sidewalk (both ends) had Cohen’s 
kappa values in the substantial range while presence of a 
stop sign and presence of a traffic light fell into the almost 
perfect range. The presence of a sidewalk, the presence 
of a marked crosswalk, and the number of traffic lanes 
were measured with almost perfect agreement using 
PABAK. The presence of missing curb cuts at a crossing 
was measured with substantial agreement while all other 
features measured with substantial to almost perfect 
agreement using PABAK mirrored those features falling 

within these respective ranges before adjustment (i.e., 
with Cohen’s kappa).

Public amenities had the lowest reliability for both 
Cohen’s kappa and PABAK (Table  4). Of the seven fea-
tures assessed, presence of a public trash can was meas-
ured with substantial reliability and presence of a bus 
stop was measured with almost perfect reliability using 
Cohen’s kappa. Both of these features were measured 
with almost perfect agreement using PABAK. All other 
public amenities had reliability values in the poor, slight, 
fair, or moderate reliability ranges.

GigaPan® vs. GSV
Comparing the confidence intervals presented in 
Tables 2–4, GigaPan® and GSV performed similarly (21 
features had overlapping confidence intervals across the 
audit methods) with significant exceptions in the traffic 
and safety concept (Table  3) and public amenities con-
cept (Table  4). Whether or not the sidewalk was con-
tinuous had higher agreement using GSV compared to 
GigaPan® (GSV: κ = 0.72, 95% Confidence Interval (CI): 
0.57, 0.86 vs. GigaPan®: κ = 0.43, 95% CI: 0.32, 0.50), as 
did whether or not the sidewalk was continuous on both 
ends (GSV: κ = 0.63, 95% CI: 0.53, 0.78 vs. GigaPan®: 
κ = 0.38, 95% CI: 0.32, 0.41). GigaPan® was significantly 
more reliable (PABAK = 0.79, 95% CI: 0.69, 0.89) than 
GSV (PABAK = 0.55, 95% CI: 0.41, 0.68) in assessing the 
presence of a curb using PABAK. However, in assessing 
the presence of a curb cut at a crossing, GigaPan® was 
significantly less reliable (PABAK = 0.30, 95% CI: 0.13, 
0.47) than GSV (PABAK = 0.66, 95% CI: 0.52, 0.80).

Within the public amenities concept, the perceived 
safety of the segment was more reliably assessed using 
GigaPan® (κ = 0.34, 95% CI: 0.20, 0.49) compared to 
Google Earth (κ = −0.05, 95% CI: −0.17, 0.08), as well 
as the overall condition of the sidewalk (GigaPan®: 
κ = 0.29, 95% CI: 0.23, 0.46 vs. GSV κ = 0.08, 95% CI: 

Table 4  Public amenities features for street segments

PR average prevalence, PA percent agreement, GP GigaPan®, GSV Google Street View, CI confidence interval, PABAK prevalence-adjusted bias-adjusted kappa. An 
* denotes the variable was dichotomous. All other variables not denoted with * were recoded to be dichotomous solely when calculating prevalence. Significant 
differences across audit tools are italicized.

Feature N PR PA Cohen’s kappa PABAK

GP GSV GP (%) GSV (%) GP 95% CI GSV 95% CI GP 95% CI GSV 95% CI

Bus stop* 104 0.13 0.10 95 97 0.79 [0.61, 0.97] 0.84 [0.66, 1.00] 0.90 [0.82, 0.99] 0.94 [0.87, 1.00]

Public trash can 103 0.14 0.11 83 93 0.33 [0.0, 0.57] 0.66 [0.42, 0.89] 0.67 [0.52, 0.82] 0.86 [0.76, 0.97]

Perceived safety of segment 106 0.57 0.75 65 56 0.34 [0.20, 0.49] -0.05 [−0.17, 0.08] 0.30 [0.12, 0.49] 0.11 [−0.08, 0.31]

Overall condition of sidewalk 81 0.72 0.74 51 37 0.29 [0.23, 0.46] 0.08 [−0.05, 0.20] 0.25 [0.09, 0.43] 0.16 [0.02, 0.30]

Garden, flower bed, or planter* 105 0.22 0.25 77 77 0.34 [0.13, 0.55] 0.39 [0.19, 0.59] 0.54 [0.38, 0.71] 0.54 [0.38, 0.71]

Amount of trash on street 106 0.81 0.83 55 35 0.27 [0.13, 0.37] 0.10 [−0.02, 0.22] 0.40 [0.27, 0.52] 0.13 [0.01. 0.26]

Attractiveness for walking 106 0.43 0.57 47 27 0.14 [0.00, 0.30] 0.04 [−0.06, 0.14] 0.21 [0.06, 0.35] −0.09 [−0.22, 0.04]
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−0.05, 0.20). Additionally, in assessing the amount of 
trash on the street, GigaPan® was significantly more 
reliable (PABAK = 0.40, 95% CI: 0.27, 0.52) than GSV 
(PABAK = 0.13, 95% CI: 0.01, 0.26). Notably, all of these 
features within the public amenities concept were con-
sidered at best fairly reliable.

Discussion
GigaPan® and GSV
BE features in the traffic and safety concept were most 
reliably coded, based on Cohen’s kappa and PABAK, for 
both GSV and GigaPan®. Features in the traffic and safety 
concept were assessed for presence only, not quality. The 
objective nature of these questions made them easier for 
auditors to code and may be the reason reliability is high-
est for these features. Furthermore, across the auditing 
tools there were four significant differences in the level 
of agreement for BE features related to curbs and side-
walk continuity in the traffic and safety concept. Agree-
ment was higher for identifying the presence of a curb 
using GigaPan® compared to GSV. However, there was 
lower agreement in identifying the presence of a missing 
curb cut at a crossing, continuous sidewalk, and continu-
ous sidewalk (on both ends) using GigaPan® compared 
to GSV. This difference potentially stems from where 
the GigaPan® user positioned the camera on the street. 
Following the protocol, the user placed the camera on a 
tripod at the middle of the street segment. Although the 
camera rotates as images are captured, the camera does 
not traverse down the street as the GSV car does to cap-
ture imagery. Therefore, with GigaPan®, magnification 
of the imagery at the edge of the frame is reduced and 
slightly distorted because the object is farther away from 
the camera lens. This slight distortion would make it dif-
ficult for an auditor to reliably audit features at the end of 
the sidewalk/street (e.g. curb cuts at a crossing) and the 
continuity of the sidewalk as the auditor codes features 
towards the edges of the GigaPan® imagery frame (i.e. 
the ends of the sidewalk/street). In the future, a different 
lens could be used to reduce distortion and to increase 
the potential for these features to be coded reliably using 
GigaPan® imagery and/or multiple photos could be taken 
for longer street segments.

In the public amenities concept, GigaPan® performed 
significantly better than GSV across three features: the 
perceived safety of the segment, the overall condition 
of the sidewalk, and the amount of trash on the street. 
These are finely detailed BE features and are also more 
subjective. It is likely GigaPan® performed more reli-
ably across this concept because of the enhanced detail 
capabilities the tool offers. However, despite the signifi-
cant differences between GigaPan® and GSV across this 
concept, researchers should exercise caution in using 

GigaPan® to audit public amenities with reliability values 
below the moderate to almost perfect range. Research-
ers may consider utilizing a camera with different zoom 
capabilities and lens options on the GigaPan® apparatus 
to audit these BE features more reliably.

With regards to the land use concept, GigaPan® and 
GSV performed similarly. Agreement was low across 
many features (presence of broken/boarded windows, 
presence of attached housing, presence of trees that shade 
the sidewalk, the amount of trees on the street, presence of 
bars on the windows, the slope of the segment, presence of 
a vacant building/lot, and the presence of housing apart-
ments); however, after accounting for the effects of bias 
and prevalence, many land use features demonstrated 
substantial or almost perfect IRR regardless of whether 
GigaPan® or GSV was used (the presence of institutional 
land use, the presence of attached housing, the slope of the 
segment, and the presence of housing apartments). The 
land use concept is a mixture of large-scale and finely 
detailed BE features. It includes large-scale features like 
the presence of trees and different types of housing, but 
also finely detailed features (e.g. the presence of broken 
windows and bars on windows) [6].

GSV performed similarly to previous studies using 
GSV audits to study the BE. In previous studies, GSV’s 
greatest limitations were assessing finely detailed features 
and features that involved making qualitative judgments 
[6, 7]. These limitations were also evident in our study 
across features like sidewalk quality and the presence of 
litter.

This is the first study to examine the IRR of assessing 
street segment BE features using GigaPan®. The findings 
are consistent with the GigaPan® IRR results found in 
our study of park BE features [17]. Overall, both studies 
found GigaPan® to be a reliable method to assess the BE. 
The results can be explained in part by the high-defini-
tion, panoramic GigaPan® images that are static and that 
our auditors perceived as easier to code. The enhanced 
detail in the GigaPan® images may also provide research-
ers with the ability to more reliably code finely detailed 
BE features.

Improvements in the technology of videos and photo 
stitching mobile phone apps offer additional ways to 
study the BE, but even with these new forms of technol-
ogy, GigaPan® still has advantages. Videos are dynamic 
and provide new frames every millisecond, yet the time 
needed to code videos can be lengthy. Photo stitching 
apps for mobile phones provide users with the ability 
to take multiple photos and stich them together with-
out special equipment; however, these apps do not con-
sistently produce high quality panoramic images and 
may not meet the image quality standards required by 
researchers studying microscale features of the BE. As 
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technology improves, these technologies may offer viable 
methods for assessing the BE.

Overall, GigaPan® and GSV performed similarly across 
the three BE concepts including features related to land 
use, traffic and safety, and public amenities. However, 
the three significant differences in the public amenities 
concept (the perceived safety of the segment, the overall 
condition of the sidewalk, and the amount of trash on the 
street) suggest GigaPan® may be better suited to assess 
finely detailed BE features. Yet, even with the high-res-
olution imagery produced by GigaPan®, these features 
only demonstrated fair reliability. Although the presence 
of litter reached moderate agreement in the GigaPan® 
IRR study of park BE features, the findings between the 
two studies are overall consistent as finely detailed fea-
tures (e.g. presence of overgrowth and condition of open 
green space) had slight-to-fair reliability in the park study 
[17]. Therefore, such features may require high-resolu-
tion imagery not currently available through GSV, but 
could be produced by using a camera with different zoom 
capabilities and lens options on the GigaPan® apparatus. 
Additionally, although there was higher IRR using GSV 
imagery compared to GigaPan® imagery for three fea-
tures in the traffic and safety concept (i.e., presence of 
missing curb cuts at a crossing, presence of a continuous 
sidewalk, and presence of a continuous sidewalk (both 
ends), using a camera with different zoom capabilities 
and lens options may also allow auditors to more reliably 
code BE features at the edge of the photo frame when 
using GigaPan®. The significantly higher IRR of identify-
ing the presence of curb in the traffic and safety concept 
also suggests GigaPan® imagery has benefits over GSV. 
Thus, the enhanced detail capabilities of GigaPan®, cou-
pled with the overall similarities in the reliability between 
GSV and GigaPan® across the various BE concepts, posi-
tion GigaPan® as a potential, alternative tool to audit the 
BE.

PA, Cohen’s kappa, and PABAK
In this study we used three measures of reliability: PA, 
Cohen’s kappa, and PABAK. The PA does not account 
for the probability of agreeing by chance and therefore 
Cohen’s kappa is the primary statistic used to rate reli-
ability. However, Cohen’s kappa values may appear low 
when agreement is high because of very low or high 
prevalence or because of bias. In this study, PABAK was 
calculated to account for these factors. Across GigaPan® 
and GSV, PABAK values were consistently higher than 
Cohen’s kappa values for all but three BE features. How-
ever, PABAK should not be interpreted as measuring the 
same agreement as Cohen’s kappa—PABAK ignores the 
variation of prevalence across the BE features examined 
and assumes the absence of bias. In addition, PABAK has 

not been as thoroughly studied as Cohen’s kappa. There-
fore, in congruence with previous researchers, we recom-
mend using PABAK in addition to Cohen’s kappa to give 
a more complete picture of the data [30].

Limitations
Both GSV and GigaPan® had imagery issues in our study. 
For example, our analytic sample was reduced because 
of GSV issues related to poor image quality, incomplete 
imagery, or non-existent street view imagery for the seg-
ment. Given the auditor is not able to capture or recap-
ture GSV imagery, the BE could not be measured in these 
cases. These limitations are consistent with findings from 
a systematic review of GSV studies of neighborhood envi-
ronments in North America, Europe, New Zealand, Aus-
tralia, Japan, and Brazil [12]. Uniquely, the GSV imagery 
was updated for one segment during the audit process 
in our study. Furthermore, given the GSV imagery dates 
ranged from 2007 to 2016 and the GigaPan® imagery 
was from 2015, there is also temporal mismatch across 
methods for some segments. However, regardless of tem-
poral alignment, the IRR results for GigaPan® and GSV 
are independent of each other because IRR is calculated 
within each method (GigaPan® or GSV). In other words, 
the IRR results of GigaPan® do not depend on the GSV 
imagery and vice versa.

Although GigaPan® has the potential to address some 
of these GSV imagery issues, it also has limitations. 
Issues unique to GigaPan® include: the image only cap-
tured a small fraction of the street segment, GigaPan® 
Stitch Software could not open some image files, incor-
rect images were taken by the field staff, and the images 
taken of both sides of the street did not correspond to 
each other. More segments were dropped from our sam-
ple due to GigaPan® issues than GSV issues, and the 
majority of the issues associated with GigaPan® were 
user error issues. This difference suggests there is greater 
potential for problems with obtaining GigaPan® imagery 
compared to GSV imagery.

When capturing the GigaPan® images or GSV imagery 
on segments where street parking existed, cars often 
blocked the point of view of the camera. This makes it 
challenging to see some features of the street and is con-
sistently an issue in GSV studies internationally [12]. On 
the other hand, the user of GigaPan® maintains the abil-
ity to position the camera to strategically avoid or limit 
the interference of parked cars or other obstacles. There-
fore, future research teams utilizing GigaPan® technolo-
gies should incorporate this solution into their GigaPan® 
procedures.

Another factor to consider when using GigaPan® is 
the quality of the camera. Although higher quality cam-
eras increase supply costs for the project, higher quality 
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cameras may improve the quality of the GigaPan® pan-
oramas. The Canon® PowerShot S120 was used in this 
study, but future studies may consider using a cam-
era with different zoom capabilities and lens options. 
Similarly, there are various GigaPan® apparatuses that 
exist. The GigaPan® Epic was used for this study. More 
costly GigaPan® apparatuses exist and, if used, may also 
improve the imagery details. Both cost and the necessity 
for detail must be considered when deciding what equip-
ment would be most suitable for a similar study.

Strengths
One of the biggest strengths of this reliability study 
was the large sample size – 106 unique street segments 
audited twice using GSV and GigaPan® imagery. In addi-
tion, data analysis for the study was rigorous and con-
sidered various reliability measures, as it included PA, 
Cohen’s kappa, and PABAK. Few studies incorporate all 
three data analysis methods. We also used a comprehen-
sive audit tool which was tailored to the local context.

Another strength of this study is that both of the audit 
methods used (GigaPan® and GSV) were non-intrusive 
and did not place burden on community members. In 
fact, RAND partnered with local community organiza-
tions to train community partner data collectors who 
were from the Hill District or Homewood neighbor-
hoods. This is particularly important given our study 
locations were low-income neighborhoods whose resi-
dents were predominately African American. The bur-
den of health issues that trace back to the built and social 
environment in the USA are disproportionately experi-
enced by communities of color and low-income commu-
nities [31]. Therefore, it is critically important to study 
how the microscale BE features in these environments 
relate to health and contribute to health disparities, but 
also strive to collaborate with the local community and 
limit additional burdens placed on the residents.

Implications and applications of GigaPan®

GigaPan® has the ability to capture time-sensitive 
images. With GigaPan® images, the study team controls 
the image-capturing process in real time. This requires 
more planning than GSV, but resolves GSV issues related 
to missing imagery, varying imagery dates along audited 
segments, availability of less current imagery, and unex-
pected updates in street-level imagery after auditing 
processes have commenced. Furthermore, once the Giga-
Pan® image is taken, the research team is responsible for 
the permanency/archival of the imagery. In GSV, histori-
cal imagery can be viewed but the research team cannot 
control imagery archival.

GigaPan® is also applicable to populations out-
side of academic researchers. Citizen science and 

community-based participatory research literature has 
demonstrated how individuals within low-income com-
munities with little experience using technology can use 
innovative photography methodologies to gather infor-
mation about the BE features in their neighborhoods 
[32, 33]. GigaPan® gives local residents the potential to 
study the BE in their own communities and work along-
side a group or organization (e.g. researchers, community 
organizations, or local government agencies) to help col-
lect data for their own purpose. Unlike GSV, the Giga-
Pan® user is in direct control of when and where images 
are taken, allowing the user to take high-definition pano-
ramic images of BE settings or features most relevant to 
the user’s plan/project. Therefore, GigaPan® panoramas 
may be beneficial to people involved in public planning 
processes, such as designing parks or public community 
areas.

GigaPan® may also be useful for studying streetscapes 
in communities where GSV imagery is outdated, limited, 
or nonexistent.It may be a particularly valuable tool for 
assessing the BE of streetscapes in: (1) countries with 
sparse GSV imagery availability, (2) rural communities; 
given rural areas tend to have less GSV coverage and the 
GSV imagery is updated less frequently than urban areas 
[6], and (3) studies in any setting across the urban–rural 
continuum that require present-day imagery.

Additionally, although not tested in this study, meth-
ods other than human auditors could possibly be used 
to assess features in GigaPan® imagery. Similar to how 
deep learning technologies have been used to extract 
information from GSV imagery, these same advance-
ments in technology could potentially be utilized to 
extract information from GigaPan® imagery. Other Giga-
Pan® researchers have also suggested that future stud-
ies should consider whether GigaPan® images can be 
analyzed using a computer algorithm or machine learn-
ing [34]. GigaPan® produces panoramas at the gigapixel 
scale (one billion pixels), which may further the capa-
bilities of machine learning methodologies to accurately 
distinguish and classify features along the street. This 
development could extend the applicability of GigaPan® 
to fields of study that have been examined via a combina-
tion of GSV panoramas and machine learning. This could 
include using GigaPan® to study solar radiation [35, 36] 
or to estimate the demographic makeup of communities 
with potentially greater relevancy and frequency than 
the American Community Survey [37]. GigaPan® users 
could also be equipped with other assessment tools (e.g. 
air quality toolkits) to study the relationships between 
smaller spatial resolutions (e.g. street segments) and 
other environmental characteristics as has been done 
with GSV cars and air pollution monitors [38]. However, 
since GigaPan® is user-made photography, it does not 
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inherently possess the large-scale applicability that GSV 
possesses. Future studies evaluating the streetscape using 
deep learning technologies should consider these points 
when deciding whether to use GigaPan® or GSV.

Conclusions
Based on the results from this study, the audit tool 
selected (GigaPan® or GSV) for assessing BE features in 
future studies should be dependent on the specific goals 
of the research project. GigaPan® may be particularly 
well-suited for BE projects with study settings in areas 
where GSV imagery is nonexistent or updated infre-
quently. Additionally, the potential for enhanced, detailed 
imagery using GigaPan® will be most beneficial in studies 
in which BE details are a priority or smaller-scale BE fea-
tures would be challenging to see in GSV imagery. Using 
GigaPan® may prove more costly than GSV, as the meth-
odology requires people to travel to the destined location 
to capture imagery. In general, research should continue 
to explore the use of GigaPan® in evaluating the BE as 
the results from this study suggest GigaPan® is a reliable, 
alternative audit tool to GSV. Further reliability stud-
ies using machine learning to extract information from 
GigaPan® images could also be conducted.

In our study, the IRR of assessing BE features related 
to land use, traffic and safety, and public amenities was 
also impacted by the type of reliability statistic calculated. 
After accounting for the effects of bias and prevalence, 
reliability values were consistently higher across all BE 
features, except three. This was true of GSV audits and 
GigaPan® audits. This highlights the effect bias and prev-
alence has on our results, and the importance of using 
PABAK to supplement or expand upon Cohen’s kappa 
reliability findings. Future studies assessing the reliabil-
ity of BE audit tools in measuring features with varying 
prevalence should consider using PABAK to supplement 
Cohen’s kappa. Such a statistical approach provides addi-
tional perspectives on the reliability of the BE audit tools 
being evaluated.
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