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METHODOLOGY

Geostatistical COVID‑19 infection risk maps 
for Portugal
Leonardo Azevedo*  , Maria João Pereira, Manuel C. Ribeiro and Amílcar Soares

Abstract 

The rapid spread of the SARS-CoV-2 epidemic has simultaneous time and space dynamics. This behaviour results 
from a complex combination of factors, including social ones, which lead to significant differences in the evolution 
of the spatiotemporal pattern between and within countries. Usually, spatial smoothing techniques are used to map 
health outcomes, and rarely uncertainty of the spatial predictions are assessed. As an alternative, we propose to 
apply direct block sequential simulation to model the spatial distribution of the COVID-19 infection risk in mainland 
Portugal. Given the daily number of infection data provided by the Portuguese Directorate-General for Health, the 
daily updates of infection rates are calculated by municipality and used as experimental data in the geostatistical 
simulation. The model considers the uncertainty/error associated with the size of each municipality’s population. 
The calculation of daily updates of the infection risk maps results from the median model of one ensemble of 100 
geostatistical realizations of daily updates of the infection risk. The ensemble of geostatistical realizations is also used 
to calculate the associated spatial uncertainty of the spatial prediction using the interquartile distance. The risk maps 
are updated daily and show the regions with greater risks of infection and the critical dynamics related to its develop-
ment over time.
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Introduction
When the first case of human infection by the SARS-
CoV-2 virus was reported in Wuhan city, Hubei Province, 
China, on 31 December 2019 [1], no one could predict its 
global effect. The contagion dynamics of the SARS-CoV-2 
virus caught the scientific community and health systems 
by surprise, especially in respect of the rapid speed with 
which it spread. Lack of knowledge of SARS-CoV-2 and 
the disease it causes has resulted in the development of 
a range of strategies that seek to combat and mitigate 
COVID-19 while minimizing its economic impact [2–4]. 
The epidemic soon escalated into a global pandemic [5] 
that had serious implications in terms of fatalities, the 
stress on health systems and reduced economic activity, 

which is affecting everything while exacerbating existing 
economic and social inequalities [6–8].

During the early stages of the spread of a virus—when 
there are few infected people—environmental epidemiol-
ogy using contagion risk models (e.g., SIR models [9]) is 
essential in informing and guiding public health officials 
and governments as they develop strategies designed 
to manage the crisis and avoid the breakdown of health 
systems [10, 11]. However, since contagion depends on 
individual and social behaviour, these models are diffi-
cult to calibrate at a relatively small-scale and their spa-
tiotemporal predictions highly uncertain. Due to the 
exceptional propagation of COVID-19 contagion, gov-
ernments adopted a range of strategies in an attempt 
to control contagion, ranging from mitigation to sup-
pression. Whatever the strategy employed, the need 
to monitor and control the development of the disease 
remains in order to assess high-risk individuals, as the 
elderly, the effectiveness of the measures to prevent virus 
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propagation during all stages of the pandemic, to manage 
the medical resources required to combat the disease and 
learn lessons ahead of any possible second and third out-
breaks, while developing a vaccine. There several strate-
gies to monitor and control the virus, such as monitoring 
deaths, syndromic surveillance or massification of tests 
in affected communities and at-risk populations to asses 
disease prevalence. In all cases, tools that help to under-
stand spatial and temporal epidemic dynamics (e.g., https​
://covid​map.aleda​de.com/) are needed.

One of the traditional ways to map the risk of disease is 
through choropleth maps, which are usually available as 
rates (counts or proportions) of aggregated data by region 
or area (e.g., municipality boundaries). However, risks by 
area may change if the same data are aggregated using 
different spatial boundaries. One of the main contribu-
tions of geostatistics for the analysis of public health data 
is that it addresses the improvement of methods used to 
map the risk of disease. Geostatistical models have found 
ways to accommodate count data (or rates) attached to 
areal spatial supports that contribute to reducing the 
biased visual perception produced by choropleth maps 
and to facilitate the analysis of the relationships between 
risks measured over different spatial supports. The cho-
ropleth maps would have constant rates per municipali-
ties and sharp discontinuities at the boundary of each 
municipality. On the other hand, geostatistical maps, as 
those proposed herein, do show spatial variability within 
each municipality and do not exhibit sharp discontinui-
ties at the limits of each municipality as the spatial con-
tinuity pattern is imposed by the geostatistical method 
used.

In this context, an infection risk spatial model for 
COVID-19, which is based on a geostatistical frame-
work, was proposed and implemented in mainland 
Portugal, considering the infection rate by municipal-
ity. The novelty of this approach is that the daily map is 
calculated from the number of confirmed positive tested 
cases reported by the Portuguese Directorate-General for 
Health (DGS, acronym in Portuguese) and made available 
publicly online.1 This study seeks to characterize the spa-
tial dispersion of infection risk and attached uncertainty. 
It is a geostatistical simulation model that accounts for 
the infection risk uncertainty (i.e., error), derived by the 
population size of each municipality as reported by the 
Statistics Portugal [12]. The model outputs a set of pos-
sible scenarios from which we compute daily updates of 
local infection risk map and its uncertainty. At the same 
time, it facilitates monitoring and evaluating local infec-
tion risk dynamics. In addition, when decisions are made 

based on the risk map, such as the allocation of medical 
resources to prevent critical situations from arising, it is 
important to take into account the map’s uncertainty.

Next, we detail the geostatistical background related to 
the spatial modelling tool, direct block sequential simu-
lation [13], used to map the COVID-19 infection risk in 
Portugal. We follow this with a brief description of the 
spatial continuity modelling and its importance within 
the simulation model. The last section summarizes the 
implementation of this case study.

Methodology
The proposed model for mapping the COVID-19 infec-
tion risk in Portugal builds upon the Poisson model for 
rare diseases proposed by Waller and Gotway [14] and 
extended into a geostatistical framework by Goovaerts 
[15] and Oliveira et al. [16].

To predict the spatial distribution of the COVID-19 
infection risk for a specific period and the associated 
uncertainty in mainland Portugal, we use a geostatisti-
cal model based on direct block sequential simulation 
(block-DSS; [13]), which accounts for the noise caused 
by spatial uncertain data as a function of population size 
and weights the estimation of the risk semivariogram 
accordingly.

Consider c(uα) , the number of infections notified 
(i.e., confirmed positive case tests) in each municipality 
α (with α = 1, . . . ,N  municipalities) since COVID-19 
pandemic was declared up to a given day, referenced by 
its geometric centroid uα with coordinates 

(

xα , yα
)

 and 
n(uα) , the size of the population at risk (i.e., resident pop-
ulation of a given municipality). The infection rate z(uα) 
can be written as:

One can assume that z(uα) , the infection rate estimated 
from confirmed test cases, is a realization of a random 
variable Z(uα) , the true infection rate. The expected 
value of Z(uα) , E[Z(uα)] , provides therefore an estimate 
for the underlying risk of infection, R(uα) . However, Z is 
affected by the population size, such that the infection 
rate, for a given municipality with small population size 
(i.e., small infection rate denominator), will have high 
variance and consequently the confidence in the infection 
rate estimate is low. A solution to overcome this problem 
known as the small number problem [15] is achieved 
using a function (smoother), such is the case of the Pois-
son kriging method which stabilizes infection rates with 
high variance to provide a smoothed infection rate, and 
thus accessing the risk of infection R.

In the Poisson kriging model [15], the disease count 
c(uα) at each location uα is interpreted as a realization of 

(1)z(uα) =
c(uα)

n(uα)
.

1  https​://ceren​a.pt/news/daily​-infec​tion-risk-maps-covid​-19-portu​gal.

https://covidmap.aledade.com/
https://covidmap.aledade.com/
https://cerena.pt/news/daily-infection-risk-maps-covid-19-portugal
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a random variable C(uα) that follows a Poisson distribu-
tion, with the parameter expected number of counts per 
unit of time. This parameter is the product of the popula-
tion size, n(uα) , and the local risk, R(uα ), with expected 
mean m . The expectation of risk at any location is equal 
to the expectation of the infection rate

and the risk variance is equal to the infection rate vari-
ance minus a term related to the size of the population,

The purpose of this model for the COVID-19 risk map 
is to access the uncertainty of infection risk through a 
stochastic simulation methodology capable of integrating 
the different demographic size of each municipality and 
the uncertainty attached to the infection rate by popula-
tion size.

Block sequential simulation
The aim of this model is to generate high-resolution 
maps of infection risk based on recorded infection rates, 
and the associated spatial uncertainty. As the data are 
recorded in municipalities of different sizes and popula-
tions, they are interpreted as block support data. Block 
data refers to a non-point support data, which is gener-
ally referred to a volume but in this case of aggregated 
health data it refers to an area. In the application exam-
ples shown herein the spatial area refers to a municipal-
ity. The block sequential simulation algorithm gives the 
framework to deal with data with varying spatial support 
(i.e., varying size and shape of the municipality) and to 
make predictions with change of support. Thus, point 
and block support can be interpreted as two different 
support scales, in this case the scale related to the map 
cells can be referred as point support, because it denotes 
a small area when compared with the municipality areas. 
For sake of simplicity, we will refer to map cells as “point 
support” from this point forward.

In this sense, this means the resulting high-resolution 
risk maps are point support based. The stochastic simula-
tion model is based on the work of Liu and Jounel [13] 
and Soares [17].

Estimation of local means of risk
At each step of the proposed stochastic simulation 
methodology [16], local means and variances of Z(x) 
are assessed by block kriging: a kriging technique that 
accounts simultaneously for point and block data [13], 
where the block data, Bv(uα) , are defined as the spatial 

(2)E[Z(uα)] = E[R(uα)] = m

(3)

Var[Z(uα)] = Var[R(uα)]+ E[R(uα)/n(uα)]

= σ 2
R +m/n(uα).

linear average of point values, Z
(

u
′
)

 , within the block 
volume, which in this particular case simplifies to an 
area, v:

where Lα is a known linear averaging function. The sim-
ple kriging estimator, Z∗

SK (u) , at any given location, uα , is 
conditioned to both point, z(uα) , and block data, Bv

(

uβ

)

:

where m0 is the stationary mean and the kriging weights 
�α and �β are the solution of the linear kriging system:

where CPP′ , C̄PB and C̄BB
′ are spatial covariances at point–

point average point-block and average block–block [18] 
data supports, respectively. CPP0 and C̄BP0 are spatial 
covariances between point support and average block 
support data and, the point support estimate in loca-
tion, u , respectively. Please note that the kriging sys-
tem assumes a second order stationary assumption, this 
means that the spatial covariances do not depend on data 
values but exclusively on the distance between their loca-
tions (i.e., the vector h ). Simplifying, the spatial covari-
ance function can be derived as C(h) = C(0)− γ (h) , 
where C(0) is the sill of the semivariogram model γ (h) 
fitted to a population-weighted semivariogram (see next 
section).

Integrating data uncertainty
As there is noise/uncertainty attached to infection rates, 
resulting from population size [15, 16], the population 
size can be used to quantify uncertainty through an ‘error 
variance’ term, m∗/n(uα) , where m∗ is the population 
weighted mean, for zero distance covariances (Eq.  3), 
which can be introduced into the kriging system (Eq. 6), 
leading to what is called Poisson kriging [15].

Assuming block errors, say rv , are homoscedastic and 
not cross-correlated, with zero mean and known vari-
ance, then the covariance between two errors located at 
uαand uβ is:

(4)Bv(uα) =
1

|v|
∫
v
Lα

(

Z
(

u
′
))

du′ ∀α,

(5)

z(u)∗ −m =
∑

α

�α(uα) · [z(uα)−m]

+
∑

β

�β

(

uβ

)

· [Bv

(

uβ

)

−m],

(6)
[

�α

�β

]

=

[

CPP′C̄PB

C̄
t
PBC̄BB

′

]−1

.

[

CPP0

C̄BP0

]

,

(7)C
[

rv(uα), rv
(

uβ

)]

=

{

σ 2
R(uα) if uα = uβ

0 if uα �= uβ
.



Page 4 of 8Azevedo et al. Int J Health Geogr           (2020) 19:25 

Considering blocks B and B′ , generically located at uα 
and uβ . If errors are independent of the variable value, 
uncorrelated and with known variance, then:

Block sequential simulation
Block sequential simulation [13] is the extension of 
direct sequential simulation [17] by integrating differ-
ent support data. The block sequential simulation algo-
rithm workflow can be summarized as follows:

i)	 Define a random path that visits each node, u , of the 
simulation grid;

ii)	 For each node, u , search the conditioning data (clos-
est original point data and previously simulated val-
ues and block data);

iii)	Calculate the local covariance values: block-to-block, 
block-to-point, point-to-block and point-to-point; 
build and solve the block kriging system and obtain 
the local mean and variance kriging estimate at loca-
tion u;

iv)	Draw a value from the global probability distribution 
function centered at the local mean and bounded by 
the local variance obtained in (iii);

v)	 Add the simulated value to the data set and repeat 
steps (i) to (iv) until all grid nodes are simulated for 
one realization;

vi)	Repeat steps (i) to (v) until a given pre-defined num-
ber of realizations are generated.

Semivariogram of COVID‑19 infection risk
As previously described, the block sequential simula-
tion is based on a stationary spatial covariance model 
that reveals the main spatial continuity patterns of 
daily infection rates. These models are usually inferred 
from available experimental data: from the daily official 
infection rates.

As the experimental infection rates refer to differ-
ent population sizes, these must be weighted differ-
ently when calculating the experimental variogram. 
In other words, municipalities with large populations 
should have greater weighting in the experimental vari-
ogram calculation. Here we applied an adaptation of 
the semivariogram proposed by [19, 20], which uses the 
weights, w(h) , to account for population size:

(8)CBB′ =

{

CBB′
(

uα ,uβ

)

+ σ 2
R(uα) if uα = uβ

CBB′
(

uα ,uβ

)

if uα �= uβ
.

The experimental semivariogram is calculated as fol-
lows [21]:

where the vector, h, of each pair of municipality value 
was calculated with their centroids.

Data: Daily updates of infection rates 
by municipality
The number of daily infections is provided for each 
municipality each day by the DGS. This number of con-
firmed tested COV 19 cases is then converted into 
infection rates, z(uα) , that consider the number of inhab-
itants per municipality (Eq.  1). In this model, the num-
ber of inhabitants refers to the estimates provided by the 
National Institute of Statistics in 2018 [12]. As for munic-
ipalities in which the number of confirmed infections is 
not made available, our model assumes all municipalities 
have at least two confirmed infections. This assumption 
is due to the fact that the DGS only publicly releases data 
of infection per municipality if this figure is above two, 
for the protection of individuals’ data. In this way, we are 
potentially overestimating the infection risk and produc-
ing slightly pessimistic scenarios regarding it in locations 
where we don’t have the “true” data value which coin-
cides with locations where the risk is lower, but treating 
this municipalities has unknown data would even result 
in a larger overestimation. These data were also used to 
model the experimental variogram of the infection risk 
used in the direct block sequential simulation.

Infection rates are assigned as point experimental data 
to the centroid of the municipality area (Fig.  1a). Each 
municipality area is discretized by a regular grid of points 
to define the block/areal data (Fig. 1b).

Results
Spatial continuity patterns analysis of COVID‑19 infection 
rates
The experimental infection rate variograms, weighted 
for each population, were calculated according to 
Eqs. 9 and 10. Figure 2 shows the omnidirectional vari-
ograms for three different days, with the respective fit-
ted model: a spherical model with a range of 60 km. The 
three variograms are standardized by the variance of the 
corresponding day. Figure 3 shows the infection rate his-
tograms for the complete set of municipalities.

(9)w(h) =
n(uα)n(uα + h)

n(uα)+ n(uα + h)
.

(10)

γ (h) =
1

2
∑N (h)

α=1 w(h)

N (h)
∑

α=1

{

w(h)[z(uα)− z(uα + h)]2
}

,
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Fig. 1  a Location of the centroid of each municipality in mainland Portugal and the infection rate by 10,000 inhabitants on 12 April 2020; b 
example of the regular discretization of a given municipality represented by the grey circles

Fig. 2  Experimental and variogram models of COVID-19 infection rate on three different days

Fig. 3  Histogram of confirmed COVID-19 infection on three different days, showing the increase in the number of infections over time
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COVID‑19 infection risk maps
The main output of the model presented here is a set of 
realizations of the spatial dispersion of COVID-19 infec-
tion risk in a regular grid of points (2 × 2  km) cover-
ing the whole country. Each realization (one example is 
shown in Fig. 4a) reproduces the experimental infection 
rate data assigned to the municipality’s geometric cen-
tre, reproducing the main spatial patterns as revealed by 
the spatial covariances and the main rate data statistics 
(histograms).

The ensemble of realizations can lead to two main high-
resolution output maps. The median map of COVID-19 
infection risk and the ensemble of realizations (Fig. 4b). 
The uncertainty attached to COVID-19 infection risk 
can be revealed by the variance or interquartile maps 
(Fig.  4c). This local uncertainty is related to the size of 
the municipality’s population. In this application example 
we used a set of one hundred high-resolution stochastic 
simulations.

The set of median models and uncertainty COVID-19 
infection risk maps for a seven-day period are available 
in an interactive web-based application (http://ceren​a.ist.
utl.pt/news/daily​-infec​tion-risk-maps-covid​-19-portu​
gal).

Temporal trend of COVID‑19 infection risk
One of the most important characteristics of the model 
presented here is its ability to provide an analysis of the 
infection spatial dynamic over time. This allows the pro-
posed model to be part of a COVID-19 local infection 
evolution management tool. Several statistics on the local 
dynamics spatial infection patterns can be obtained: for 
example, the resulting ensemble of risk maps covering 

a period of several days or weeks may reveal a trend in 
the prevalence of infection over time. Assuming the lin-
ear behaviour of infection risk over a short period (for 
example, the median risk models obtained for five con-
secutive days in Fig.  5a–e), the linear regression slope 
is used as an indicator of the direction and intensity of 
the risk trend over time (Fig. 5f ). The slope value in the 
legend indicates the increase and stability of the reduced 
level of risk on each day: slope = 1 means an increase of 
one infected/10,000 inhabitants per day; slope ≈ 0 shows 
no significant changes; slope = - 1 means a reduction of 
one infected/10,000 inhabitants. The uncertainty in the 
regression slope is shown in Fig. 5g by mapping the R2 of 
the linear regression.

Final remarks
The model proposed here is based on the stationarity 
assumptions of infection rate statistics: the global mean 
and variogram, and the reported infection rate stationar-
ity for each municipality. When a given infection rate is 
reported for a municipality, a spatial stationarity of that 
rate is assumed for the entire municipality without tak-
ing population dispersion into account. Cluster infection 
data (occurring, for example, in retirement communities) 
can eventually skew the municipality’s infection rate, par-
ticularly when the municipality has a small population.

One of the most innovative components introduced by 
this model is its ability to be updated in the short-term. 
Thus, risk maps are produced using information pro-
vided daily by the DGS. Eventual sampling errors of the 
infected people in daily reports will be reflected in the 
maps.

Fig. 4  a Realization of infection risk; b median model of the infection risk by COVID-19 in mainland Portugal on April 12, 2020; and c the 
interquartile distance (Q3 - Q1) computed from a set of 100 realizations using the proposed method

http://cerena.ist.utl.pt/news/daily-infection-risk-maps-covid-19-portugal
http://cerena.ist.utl.pt/news/daily-infection-risk-maps-covid-19-portugal
http://cerena.ist.utl.pt/news/daily-infection-risk-maps-covid-19-portugal
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Conclusions
The proposed model for characterizing the COVID-19 
infection risk, based on stochastic simulations, pro-
duced consistent results for risk and associated uncer-
tainty. The daily update of risk and uncertainty maps 
enable a regional analysis of the dynamics of the phe-
nomenon over time through, for example, the use of 
simple statistics, such as the slope of a short-term lin-
ear regression or a more comprehensive methodology 
such as functional data analysis [22]. The spatial uncer-
tainty assessment of the model is an important feature 
of the algorithm, since it provides additional informa-
tion about the local estimates to the decision process. 
For instance, the local probabilities of risk exceedance 
of a certain threshold can be computed from the simu-
lated scenarios. However, the most significant impact 
of this model is its adoption as an instrument for man-
aging the COVID-19 infection phenomenon, to be used 
together with other models and other relevant informa-
tion, allowing health authorities to determine greater 
or lesser containment strategies and the establishment 
of lockdowns targeting specific areas where the infec-
tion risk is higher and increasing for time.
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