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Abstract 

Background:  Some studies have reported that air pollution exposure can have adverse effects on pregnancy 
outcomes. However, the disparity between urban and rural areas in the risk of preterm birth (PTB) has yet to be 
elucidated. Considering geographic contexts as homogeneous or ignoring urban–rural differences cannot accu-
rately reveal the disparities in the health effects of air pollution under different geographic contexts. The aims of this 
study were to examine the disparities in the risks of PTB in three different regions and five urban–rural types and to 
investigate the extent to which fine particulate matter (PM2.5) exposure during the entire pregnancy can explain the 
variations.

Methods:  We collected data on 429,865 singleton newborns born in 2014 in Hubei Province, China, and divided 
Hubei Province into three regions. Spatial correlation methods were employed to measure the associations between 
the rate of PTB and air pollution using average annual indexes for the entire province and regions. A series of mul-
tilevel logistic models were conducted to examine disparities in the risks of PTB with decreases in urbanity and the 
effects of air pollution exposure on the occurrence of preterm births.

Results:  The PM2.5 concentration was significantly different across the regions. The eastern region had the most 
wide-ranged and serious level of pollution, whereas the levels in the middle and western regions weakened. The 
odds of PTB and air pollution exhibited a positive spatial correlation for the entire province and in the east (BiMoran’s 
I = 0.106 and 0.697, respectively). Significant urban–rural disparities in the risks of PTB were noted in the east and 
middle regions, and the mean PM2.5 exposure during the entire pregnancy was positively associated with PTB risk. 
However, in the west, the results showed weak differences in the risks of PTB among the five urban–rural types and 
an insignificant effect of PM2.5 exposure. The direction of the effect of district/county-level income on PTB varied by 
region.

Conclusions:  This study finds that air pollution exposure and PTB have significant and positive spatial relationships in 
areas with a serious air pollution burden. The risks of PTB in three regions of Hubei Province follow the same W-shaped 
pattern as urbanity decreases and rurality increases. High levels of air pollution exposure may be an important disad-
vantage for urban pregnant women in this setting.
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Background
Fine particulate matter (with an aerodynamic diam-
eter ≤ 2.5  μm, PM2.5) has become a main pollutant, and 
its relationship with human health has attracted great 
attention worldwide [1, 2]. With potential biological 

Open Access

International Journal of 
Health Geographics

*Correspondence:  majingbnu@163.com
1 Beijing Key Laboratory for Remote Sensing of Environment and Digital 
Cities, Faculty of Geographical Science, Beijing Normal University, 
Beijing 100875, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-3306-8525
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12942-020-00218-0&domain=pdf


Page 2 of 15Li et al. Int J Health Geogr           (2020) 19:23 

mechanisms related to inflammation and oxidative stress 
[3–5], PM2.5 can induce cardiovascular disease and res-
piratory disease [6–10], and increase the mortality rate 
[11, 12]. Moreover, PM2.5 can prevent people from engag-
ing in outdoor physical activities [13, 14] and has adverse 
effect on mental health, such as depression and anxiety 
[15–17].

The relationship between air pollution and delivery 
outcomes has become an important topic. Gestational 
week and birth weight are important predictors of infant 
morbidity and mortality [18–20]. Considerable research 
has explored the relationships between maternal air pol-
lution exposure and various adverse outcomes, such as 
preterm birth (PTB), low birth weight (LBW), and small 
for gestational age (SGA). However, the results are incon-
clusive. While some studies showed that long-term or 
short-term maternal exposure during pregnancy had 
positive influences on adverse delivery outcomes [5, 21–
25], other studies found insignificant relationships [26] or 
even negative associations [27].

In addition to differences in methods [28, 29], the 
inconsistent results are also related to spatial landscape 
heterogeneity. Past cross-country or regional studies 
revealed spatial variations in exposure-health relation-
ships [30, 31]. Landscape heterogeneity refers to the dif-
ferences in certain characteristics of study areas, such 
as lifestyles, socioeconomic status (SES) and ecological 
environment, and these characteristics could mediate the 
relationship between pollution exposure and birth out-
comes. Some research has suggested the notion of “dou-
ble jeopardy”, wherein the effect of the environment on 
health is greater in poor areas [32, 33]. To make matters 
more complicated, the economy-emission relationship 
based on the environmental Kuznets hypothesis poten-
tially exhibits an inverted U-shaped pattern [34]; thus, 
the impacts of income increases on health are not always 
positive.

The introduction of urban–rural location types could 
account for different economy-environment contexts. 
Compared with their urban counterparts, rural residents 
generally have disadvantaged SES, low nutritional status 
and less convenient access to medical services [35–38]. 
Some research showed that urban residents have better 
physical health than rural people [39, 40], while other 
research found non-significant distinctions [41]. Urban–
rural disparities in environment-health relationships 
have been examined in very few studies [42, 43]. For 
instance, a recent study found that rural mortality was 
more sensitive to adverse temperature conditions than 
urban mortality [42]. Moreover, some research further 
indicated that health status did not change monotonically 
along the urban–rural continuum but more likely fol-
lowed an inverted U or J-shape [44–46]. In terms of birth 

outcomes, Larson et al. found that crude rates of LBW in 
non-metro areas were lower than those in metropolitan 
areas in the US [47], while some other studies reported 
that pregnant women in rural areas adjacent to urban 
areas (or suburban areas) had better birth outcomes than 
both remote rural and urban counterparts [48, 49]. By 
and large, the urban–rural disparity in the relationship 
between air pollution exposure and PTB has yet to be 
elucidated. In most prior studies, the urban–rural dichot-
omy assumed that one was superior to the other, ignor-
ing the heterogeneity among metropolis, small cities, 
large towns, and rural areas, which could greatly differ 
in air quality, SES and health. Thus, a finer classification 
of urban–rural areas should be made in research on the 
relationships between PTB and environmental pollution.

This study attempts to investigate the air pollution-PTB 
association with a finer urban–rural classification using 
the case of Hubei Province, China. First, we investigated 
whether exposure to PM2.5 during the entire pregnancy 
significantly increased the risk of PTB. Second, we exam-
ined the disparities in the risks of PTB among various 
urban–rural continua and how air pollution exposure 
explained these variations. To the best of our knowledge, 
this is the first study that examines whether and to what 
extent PM2.5 exposure can explain the PTB risks with a 
finer-scale analysis of both urban–rural and regional 
disparities. This study contributes to the environmental 
health literature worldwide and provides a better under-
standing of the urban–rural disparity in the relationships 
between ambient air pollution exposure and PTB, par-
ticularly in developing countries, where such research 
has been very scarce to date.

Study area
Figure  1 shows the location of Hubei Province, which 
includes 17 prefecture-level cities, and each city consists 
of one or more districts and counties. The total area of 
the province is approximately 185,900 km2, and the pop-
ulation was 58.16 million by the end of 2014. Regarding 
natural conditions, mountainous regions account for 
56% of the province [50] and are especially concentrated 
in the west, which partly restricts the development of 
urbanization in these areas and greatly affects the popu-
lation and economic distribution of the province.

Data
Neonatal and maternal clinical data
In the analysis, the birth records of newborns and infor-
mation on pregnant women were collected from the 
Health Commission of Hubei Province, and data from 
a total of 557,243 newborns in 2014 were obtained. 
The dataset records the maternal residence, hospital 
of delivery, individual and household socio-economic 
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information, physical examinations during pregnancy, 
neonatal and maternal physiological characteristics at 
the time of delivery, and so on. We geocoded each preg-
nant woman’s residence location at the sub-district level, 
and 485,306 newborns with complete maternal residence 
information were retained. For each newborn, we col-
lected considerable information on his/her mother, such 
as age, race/nationality, educational level, pregnancy test, 
conception and labour date. Neonatal characteristics, 
including the birth date, gender, birth weight and gesta-
tional age (GA), were collected. The GA was calculated by 
the delivery date minus the last menstrual period (LMP). 
Newborns with missing information and non-singletons 
were removed. According to clinical definition, less than 
37 completed gestational weeks is considered a preterm 
birth. Moreover, we also excluded samples with GA less 
than 32 weeks or greater than 44 weeks and birth weight 
less than 1.0 kg or more than 5.5 kg. Finally, we selected 
429,865 singleton newborns for analysis.

Air pollution data
We employed the Weather Research and Forecasting 
Model Coupled with Chemistry (WRF/Chem, version 3.5) 
[51] to simulate the daily PM2.5 concentration in Hubei 
Province and its surrounding areas. The initial meteoro-
logical data in 2014 were extracted from the National 
Centres for Environmental Prediction Final Operational 
Global Analysis data (http://rda.ucar.edu/datas​ets/ds083​

.2/). Simulated meteorological data generated by WRF 
modelling were validated by meteorological data from 
China Earth International Exchange stations. The mod-
elled PM2.5 concentrations were then downscaled to a 
resolution of 1 km × 1 km using a Gaussian downscaling 
method based on a PM2.5 emissions inventory and wind 
data (http://inven​tory.pku.edu.cn/) and validated by air 
quality monitoring (AQM) data (http://beiji​ngair​.sinaa​
pp.com/). For further details on the model evaluation, 
please see Shen et al. [52].

The daily PM2.5 concentrations in 2014 at the sub-dis-
trict level were calculated by overlaying the sub-district 
administrative shapefile of Hubei and 1  km × 1  km grid 
data using ArcGIS 10.3. The formula is shown in Eq. (1):

where Ck and Ci represent the daily average PM2.5 con-
centrations in sub-district k and grid i, respectively; m is 
the total number of grids with intersections with sub-dis-
trict k; Sik is the area of the corresponding intersection; 
and Sk is the total area of sub-district k.

Given that AQM data before 2014 are not available in 
Hubei Province, we only simulated the daily PM2.5 con-
centrations in 2014 and replaced 2013 concentrations 
using the same period for each sub-district. Given that a 
pregnancy term covers approximately 75% of a year and 

(1)Ck =

m
∑

i=1

Sik

Sk
Ci

Fig. 1  Location of Hubei Province and its terrain and administrative division

http://rda.ucar.edu/datasets/ds083.2/
http://rda.ucar.edu/datasets/ds083.2/
http://inventory.pku.edu.cn/
http://beijingair.sinaapp.com/
http://beijingair.sinaapp.com/
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considering the seasonality of air pollutants [53], calcu-
lating the pollution exposure during the entire pregnancy 
is superior to using an annual average concentration [2, 
33]. After the daily concentrations were averaged, the 
spatial distribution of the annual PM2.5 concentrations 
in 2014 at the sub-district level in Hubei Province was 
determined, as shown in Fig. 2.

Area‑level income data
Family income was not available in the birth records, 
and thus we instead collected annual income at the dis-
trict/county level from the Hubei Statistical Yearbook 
2014 [54]. The income data of each district/county in the 
yearbook consisted of two columns, urban per capita dis-
posable income (UDI) and rural per capita net income 
(RNI), which represent the income status of urban and 
rural residents in this district/county, respectively. We 
assigned UDI to pregnant women living in a city proper 
or county town and RNI to three other urban–rural types 
(See “Methods”).

Methods
Regional division and definition of urban–rural continuum
Figure 3 provides an overview of the methods used in this 
study. First, we divided Hubei Province into three regions 
for comparative analysis. The east includes Wuhan 
(WH), Xianning (XN), Huangshi (HS), Huanggang (HG), 
Ezhou (EZ), Xiantao (XT), Xiaogan (XG), Tianmen (TM) 

and Qianjiang (QJ). The middle includes Jingzhou (JZ), 
Jingmen (JM), Xiangyang (XY) and Suizhou (SZ). The 
west includes Enshi (ES), Yichang (YC), Shiyan (SY) 
and Shennongjia (SNJ). Heterogeneity of physical and 
socioeconomic conditions was noted among these three 
regions. The east is the focus of economic development 
in the province and is also called Wuhan Metropolitan 
Area, while the terrain in the west is mainly mountainous 
with a sparse population and under-developed economy 
(Fig. 1).

We also defined five types of urban–rural con-
tinua according to the Urban–Rural Classification and 
Codes (URCC) by the China National Bureau of Statis-
tics using the indicators of population and economic 
development [55]. The URCC includes three main 
urban–rural categories: district (code: 110), township 
(120) and countryside (200). Sub-district is the small-
est administration cell and census tract in China and 
include several types, such as jiedao, zhen, and xiang. 
All sub-districts in the districts are called jiedao (city 
proper, i.e., the most urbanized areas of central cit-
ies) or zhen (suburb, i.e., areas adjacent to city proper). 
Township refers to the zhen in the counties and can be 
further divided into two types: county town (121) and 
general town (122). The county town is the seat of the 
county government, and the urbanized areas in this 
location are inferior to the city proper but superior to 
the suburbs. In addition, counties also include other 

Fig. 2  Spatial distribution of annual PM2.5 concentration at the sub-district level in 2014 in Hubei Province
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areas called xiang, which is the countryside. Thus, we 
finally divided all sub-districts into five types of urban–
rural continua: city proper, county town, suburb, gen-
eral town and countryside (Table  1), and this order 
reflects a decrease in urbanization and SES. Briefly, city 
proper and county town represent core urban areas 
with different scales, while suburbs, general town and 
countryside are different types of rural areas. Com-
pared with suburbs, general town and countryside are 
more remote from urban areas, and the latter is a more 
deprived area than the former.

Spatial correlation analysis
Before regression modelling, we used a series of spatial 
correlation methods to measure and geo-visualize the 
spatial dependence between air pollution and the risk of 
PTB. The global spatial autocorrelation index is similar 
to Pearson’s correlation coefficient. However, the spatial 
adjacency is considered, and its general formula is meas-
ured by the Moran index (Moran’s I) in Eq. (2) [56, 57]:

where xi represents the attribute value of spatial unit i; x̄ 
and S2 are the corresponding average and variance value 
of the entire region, respectively; wij is the element of the 
spatial weight matrix based on the first-order Rook con-
tiguity method; and n is the total number of spatial units 
in the region.

The above index is applicable to single attribute. Bivari-
ate Moran’s I (BiMoran’s I) measures the spatial corre-
lation of two attributes by replacing xj with yj, and the 
bivariate local indicator of spatial association (BiLISA) is 
used to measure this correlation between a spatial unit i 

(2)Moran
′

sI =

∑n
i=1

∑n
j=1

wij(xi − x̄)
(

xj − x̄
)

S2(x)
∑n

i=1

∑n
j=1

wij

3. Spatial correlation analysis:
(1) Variables used: annual average PM2.5

concentration and average preterm
rate at the sub-district level;

(2) Spatial correlation index: bivariate 
Moran’s I and LISA;

(3) Geo-visualizing the relationship 
between two variables according to 
bivariate LISA.

4. Multilevel logistic models:
(1) Model 1: urban-rural types;
(2) Model 2: PM2.5 exposure;
(3) Model 3: urban-rural types + 

covariates;
(4) Model 4: PM2.5 exposure + 

covariates;
(5) Model 5: urban-rural types + PM2.5

exposure + covariates.

1. Sample selection criteria:
(1) Maternal residence information at 

the sub-district scale is available;
(2) No missing variables for mother and  

newborn;
(3) Singleton newborns with gestational 

age between 32 and 44 weeks and 
birthweight between 1.0 and 5.5 kg.

2. Regional division and definition of 
urban-rural continuum:
(1) Hubei Province were divided into 

three regions for comparative analysis.
The following spatial analysis and 
multilevel modelling were conducted 
by region, respectively;

(2) Five urban-rural types were treated as 
independent variables in multilevel 
models.

Fig. 3  Overview of the methodology in this study

Table 1  The definition of urban–rural continuum

Code Category jiedao zhen xiang

110 District City proper Suburb

120 Township

121 County town County town

122 General town General town

200 Countryside Countryside
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and its neighbourhoods as noted in the following Eqs. (3) 
[58] and (4) [59]:

where zxi and zyi represent standardized values (scaled by 
standard deviation) of attribute variables x and y of each 
spatial unit i; S(x) and S(y) are their standard deviation; 
and the other symbols are the same as noted in Eq. (2).

Here, spatial units refer to each sub-district, and we 
used annual PM2.5 concentration as the explanatory 
variable x. Given the limited number of samples in many 
sub-districts, i.e., the small population problem [60], we 
constructed a smoothing window [61] to calculate the 
spatial average PTB rate as the dependent variable y for 
each sub-district. Specifically, we replaced sub-district 
polygons with their geometric centroids and took 50 km 
as the spatial window radius to calculate the average rate 
for each centroid. Figure 4 shows the spatial distribution 
pattern of the PTB rate in Hubei Province.

According to the zx, BiLISA value and its significance, 
the sub-districts can be divided into five categories: when 
BiLiSA > 0 and p ≤ 0.05, a significantly positive spatial 

(3)BiMoran
′

sI =

∑n
i=1

∑n
j=1

wij(xi − x̄)
(

yj − ȳ
)

S(x)S
(

y
)
∑n

i=1

∑n
j=1

wij

(4)BiLISAi = zxi

n
∑

j=1

wijzyj

correlation is noted between air pollution and preterm 
rate, including types of H–H (when zx > 0, i.e., high pol-
lution with high preterm rate) and L–L (when zx < 0, i.e., 
low pollution with low preterm rate); when BiLiSA < 0 
and p ≤ 0.05, a significantly negative correlation is noted, 
including types of H–L (when zx > 0, i.e., high pollution 
with low preterm rate) and L–H (when zx < 0, i.e., low 
pollution with high preterm rate); finally, when p > 0.05, 
there is no significant correlation [62]. We used Geoda 
[63] to calculate the above indexes for the whole province 
and three regions.

Multilevel logistic model
Then, we used multilevel logistic models to analyse 
whether and to what extent air pollution exposure 
increased the risk of PTB during the entire pregnancy. 
Compared with a fixed logistic model, a multilevel model 
has a random effect to stratify samples to describe the 
potential group differences and unobserved variables. 
The general form of the model is as follows:

where P is the probability of the event (for a premature 
infant, y = 1); p and q are the total number of variables in 
the level 1 and 2, respectively; and uj is the random effect.

(5)

ln

[

P
(

yij = 1
)

1− P
(

yij = 1
)

]

= β0 +

p
∑

m=1

βmxijm +

q
∑

n=1

βnxjn + uj + εij

Fig. 4  Distribution of preterm birth rate at sub-district level based on the spatial smoothing method in Hubei Province
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In this study, the random effect was based on the 
sub-district identifier. Explanatory variables included 
maternal residence types in the urban–rural continua, 
PM2.5 exposure and other individual-level and area-level 
covariates. PM2.5 exposure was measured as the average 
daily concentration of maternal permanent residence 
at the sub-district level during the whole pregnancy for 
each sample, which can prevent discussion of seasonal 
and long-term trends as we only used one year’s neo-
natal samples. The effects were reported by a 30-μg/
m3 increase. Individual-level covariates contained cat-
egorical variables of maternal nationality (Han or minor-
ity), age (< 20, 20–24, 25–29, 30–34, or ≥ 35  years), 
educational level (primary, secondary, or tertiary), regu-
lar health or physical checks (less than 5 times or not), 
month of conception (January as reference), new-born 
sex (male or female), and parity (firstborn or non-first-
born). The area-level covariate referred to annual income 
at the district/county level and was scaled by provincial 
standard deviation. To test the possible non-monotonic 
relationship, we also added the squared term of income 
into models.

In the framework of multilevel models, we constructed 
a series of models. Model 1 contains only residence type 
variables to test the overall difference of PTB risk, while 
model 2 includes only the PM2.5 exposure variable. As 
controlled factors, individual- and area-level variables 
were added in models 3 and 4, respectively. Model 5 is 
the final model and included all variables mentioned 

above. Furthermore, to investigate whether the effects are 
varied, we also assessed all models using samples for each 
region. All of the multilevel models were tested using the 
lem4 package of the R software environment [64].

Results
Descriptive characteristics
Table 2 lists the samples of newborns used in this study 
and basic indicators of population and economy in 2014 
for the entire province and each prefecture-level city. The 
capita GDP (GDP/Pop in Table 2) varies greatly in differ-
ent cities. The values for WH, HS, EZ and QJ in the east, 
XY in the middle and YC in the west are greater than the 
provincial average, while the capita GDP in ES in the west 
is the lowest. The ratio of samples to total population is 
7.39‰ for the whole province, which is close to the birth 
rate of Hubei Province in 2014 (11.86‰). Overall, our 
sample data are representative of newborns in the study 
area.

Table  3 shows the descriptive characteristic of the 
sample data for the entire province and three regions. 
The east accounts for greater than half of the new-
borns, as it is a densely populated area in the prov-
ince. In contrast, the west has the least newborns. 
The overall prevalence of PTB is 2.98% in Hubei, and 
minimal differences are noted among three regions. 
The majority of pregnant mothers are located in the 
city proper or general town, but there are distinct dif-
ferences in the proportion in various urban–rural 

Table 2  Overview of neonatal samples and indicators of population and economy in 2014

Pop, total resident population; GDP, gross domestic product; CNY, Chinese yuan

Province/city Hubei WH XN HS HG EZ

Pop (10,000) 5815.99 1033.80 248.92 244.92 626.25 105.88

GDP (10 billion CNY) 288.73 100.69 9.64 12.19 14.77 6.87

GDP/Pop (1,000 CNY) 49.64 97.40 38.73 49.77 23.58 64.88

Sample 429,865 68,026 33,036 26,396 52,034 10,289

Sample/Pop (‰) 7.39 6.58 13.27 10.78 8.31 9.72

Province/city XT XG TM QJ JZ JM

Pop (10,000) 116.60 486.13 129.16 95.44 574.42 288.91

GDP (10 billion CNY) 5.52 13.55 4.02 5.40 14.80 13.11

GDP/Pop (1,000 CNY) 47.34 27.87 31.12 56.58 25.77 45.38

Sample 13,180 5,831 12,205 7,606 47,112 19,499

Sample/Pop (‰) 11.30 1.20 9.45 7.97 8.20 6.75

Province/city XY SZ ES YC SY SNJ

Pop (10,000) 560.02 218.38 331.77 410.45 337.27 7.67

GDP (10 billion CNY) 31.29 7.23 6.12 31.32 12.01 0.20

GDP/Pop (1,000 CNY) 55.87 33.11 18.45 76.31 35.61 26.08

Sample 49,306 22,393 32,412 6,047 24,425 68

Sample/Pop (‰) 8.80 10.25 9.77 1.47 7.24 0.89
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residence types among the three regions. For instance, 
the proportion of pregnant women is relatively high in 
the countryside in the west. Moreover, the PM2.5 pol-
lution exposure in the three regions is quite different 
(Fig.  2). The q-statistic in Geodetector (www.geode​
tecto​r.cn) [65, 66] is 0.38, and the annual PM2.5 con-
centration is significantly different across the regions 
at the p = 0.05 level. Figure 5 shows the average annual 

PM2.5 concentration histograms for the regions, which 
indicates that the east has wide-ranged and serious 
air pollution, whereas the middle and west mainly 
has concentrations of 60–90 μg/m3 and 30–60 μg/m3, 
respectively.

There is no significant difference in individual-level 
variables among regions except for nationality and the 
frequency of physical checks. The west has a greater pro-
portion of minority nationalities than the others, as it 
includes all ethnic minority autonomous areas in Hubei. 
Moreover, in the middle and west, the majority of preg-
nant women have less than five health checks during 
pregnancy, which might be attributed to the fact that 
these regions have an under-developed economy and 
fewer medical facilities. In addition, most people live in 
general towns and countryside in these regions. Area-
level income gaps exist in three regions. The average 
income in the east is the highest, while that in the west is 
the lowest.

Spatial correlation analyses
Table  4 presents the results of the global univariate 
and bivariate Moran’s I in the entire province and three 
regions. The PM2.5 concentration and preterm rate 
exhibit positive and significant spatial autocorrelation in 
all cases. The BiMoran’s I was close to null in the middle, 

Table 3  Descriptive characteristics for  variables used 
in multilevel models (%)

Std, standard deviation; CNY, Chinese yuan

“a” indicates reference group

Variable Hubei East Middle West

Total 429,865 228,603 138,310 62,952

GA (weeks)

 Mean (Std) 39.24 (1.27) 39.32 (1.26) 39.14 (1.25) 39.17 (1.32)

 < 37 2.98 2.91 2.94 3.32

Residence types

 City propera 31.98 40.04 23.04 22.36

 County town 10.45 9.94 9.10 15.24

 Suburb 9.10 13.68 4.90 1.70

 General town 41.19 31.81 58.65 36.89

 Countryside 7.28 4.53 4.31 23.81

PM2.5 exposure (30 μg/m3)

 Mean (Std) 3.10 (1.18) 3.63 (1.21) 2.87 (0.61) 1.69 (0.53)

Nationality

 Han (Main)a 96.89 99.63 99.35 81.55

 Minority 3.11 0.37 0.65 18.45

Age (years)

 Mean (Std) 26.83 (4.50) 26.95 (4.49) 26.60 (4.32) 26.91 (4.93)

 < 20 2.29 1.95 2.08 3.96

 20–24 30.49 29.85 32.04 29.39

 25–29a 43.98 44.22 44.72 41.50

 30–34 16.49 17.13 15.38 16.65

 ≥ 35 6.75 6.85 5.79 8.49

Educational level

 Elementary 19.30 21.21 15.44 20.85

 Secondarya 74.79 70.70 81.20 75.55

 Tertiary 5.91 8.09 3.36 3.59

Frequency of health checks

 < 5a 78.31 63.25 95.19 95.91

 ≥ 5 21.69 36.75 4.81 4.09

Parity

 Firstborn 75.41 73.38 81.01 70.45

 Non-Firstborna 24.59 26.62 18.99 29.55

Infant sex

 Malea 54.07 54.72 53.82 52.28

 Female 45.93 45.28 46.18 47.72

Income (1,000 CNY)

 Mean (Std) 14.32 (7.20) 15.89 (8.15) 13.69 (4.82) 9.98 (5.75)

Fig. 5  Annual average PM2.5 concentration histograms for regions

Table 4  Calculation of results of global Moran’s I (p values)

Significant level: “*” p ≤ 0.05

Variable PM2.5 concentration Preterm rate Bivariate

Hubei 0.970 (0.00)* 0.861 (0.00)* 0.106 (0.00)*

East 0.968 (0.00)* 0.940 (0.00)* 0.697 (0.00)*

Middle 0.872 (0.00)* 0.856 (0.00)* − 0.004 (0.44)

West 0.927 (0.00)* 0.731 (0.00)* 0.049 (0.02)*

http://www.geodetector.cn
http://www.geodetector.cn
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and a weak positive trend was noted over the entire prov-
ince and in the west. A strong positive correlation was 
noted in the east.

Figure  6 displays the cluster distribution according 
to the BiLISA value and its significance for the entire 
province and three regions. “Red” indicates a positive 

Fig. 6  Spatial distribution of bivariate LISA clusters
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correlation (H–H, L–L) while “blue” indicates a nega-
tive correlation (H–L, L–H). From the perspective of the 
whole province, the H–H areas were concentrated in the 
east and in JZ in the middle, while L–H areas were mostly 
located in the west. However, the number of H–L areas 
was small, and these areas were scattered in the east and 
middle. However, L–L areas were widely distributed 
across Hubei. In terms of the regions, four types of areas 
appeared in each region. H–H and L–L areas dominated 
the east, while the west had larger L–H areas.

Multilevel modelling analyses
Table  5 summarizes the results of all of the models 
related to PM2.5 exposure variable. The odds ratio (OR) 
was calculated as exp (β), and the 95% confidence inter-
val (CI) was reported simultaneously. In the unadjusted 
full-sample models (model 2), the OR was significantly 
greater than one (1.06; 95% CI 1.04–1.09) but no longer 
statistically significant after adjustment by covari-
ates and urban–rural type variables (0.98; 0.95–1.02 
in model 4, 0.99; 0.95–1.03 in model 5). The models 
in the middle exhibited similar trends. All ORs were 

significant in the eastern-sample models regardless of 
adjustment. In contrast, the results of all the models in 
the west were insignificant.

Table 6 summarizes the results of all multilevel mod-
els involving urban–rural type variables. Model 1 was 
used to test the difference in PTB risk among various 
residence types. All ORs were less than one, and most 
were significant. These results indicate that compared 
with the city proper, other urban–rural types have a 
lower risk of PTB. However, the effect did not mono-
tonically decrease as urbanity weakened. Figure 7 pre-
sents the trends of the PTB risk magnitudes ordered 
by urbanity from the strongest to the weakest, and 
W-shapes are noted across the urban–rural continua 
for the entire province and all regions. After control-
ling for covariates in model 3 and considering the PM2.5 
exposure in model 5, the ORs changed slightly com-
pared with model 1. The entire right side of the con-
fidence intervals of ORs approaches or exceeds one, 
especially in the east and west, which indicates that the 
differences in PTB risks among urban–rural types have 
become less obvious.

Table 5  ORs of PM2.5 exposure variable in multilevel models

OR, odds ratio; CI, confidence interval

Significant level: “*” p ≤ 0.05

Region OR (95% CI)

Hubei East Middle West

Model 2 1.06 (1.04–1.09)* 1.13 (1.10–1.16)* 1.15 (1.07–1.23)* 0.93 (0.82–1.07)

4 0.98 (0.95–1.02) 1.12 (1.06–1.20)* 1.04 (0.96–1.13) 0.88 (0.75–1.04)

5 0.99 (0.95–1.03) 1.12 (1.05–1.20)* 1.02 (0.94–1.11) 0.83 (0.68–1.00)

Table 6  ORs of residence type variables in multilevel models

OR, odds ratio; CI, confidence interval

Significant level: “*” p ≤ 0.05

Model Type OR (95% CI)

Hubei East Middle West

1 County town 0.79 (0.70–0.89)* 0.74 (0.63–0.87)* 0.76 (0.60–0.95)* 0.88 (0.66–1.16)

Suburb 0.80 (0.73–0.89)* 0.79 (0.71–0.88)* 0.86 (0.68–1.08) 0.97 (0.58–1.62)

General town 0.73 (0.68–0.78)* 0.72 (0.66–0.78)* 0.69 (0.61–0.78)* 0.81 (0.66–0.99)*

Countryside 0.87 (0.79–0.96)* 0.79 (0.68–0.92)* 0.75 (0.59–0.94)* 0.96 (0.78–1.18)

3 County town 0.82 (0.72–0.93)* 0.76 (0.64–0.91)* 0.99 (0.77–1.27) 0.74 (0.52–1.07)

Suburb 0.85 (0.76–0.96)* 0.88 (0.75–1.03) 0.80 (0.64–1.01) 0.99 (0.47–2.10)

General town 0.78 (0.69–0.87)* 0.82 (0.68–0.99)* 0.74 (0.59–0.94)* 0.80 (0.45–1.44)

Countryside 0.91 (0.78–1.05) 0.91 (0.73–1.13) 0.77 (0.56–1.06) 0.97 (0.53–1.78)

5 County town 0.81 (0.71–0.92)* 0.82 (0.68–0.99)* 1.01 (0.78–1.30) 0.69 (0.47–1.00)

Suburb 0.86 (0.76–0.96)* 0.84 (0.71–0.98)* 0.82 (0.64–1.04) 1.15 (0.53–2.48)

General town 0.78 (0.69–0.88)* 0.79 (0.65–0.96)* 0.75 (0.59–0.94)* 0.96 (0.52–1.79)

Countryside 0.91 (0.78–1.06) 0.87 (0.70–1.09) 0.77 (0.56–1.06) 1.14 (0.61–2.13)
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Table  7 shows the ORs of covariates used in the 
final model (model 5). No significant difference was 
observed in the risk of PTB between the Han (China’s 
main nationality) and minority nationalities in Hubei 
and any region. Pregnant women less than 20  years 
old have a higher risk of PTB, and the risk continues 
to increase when pregnant women are over 30  years 
old. Those with higher education have a significantly 
higher risk in the west, but no significant differences 
were found in other cases. Regular health checks can 

significantly reduce the risk of PTB in the entire prov-
ince and the east. Firstborn infants in the middle have a 
higher risk of PTB, but this correlation was not signifi-
cant in other regions. Female babies have a lower risk 
than males for the entire province and all regions. No 
significant non-monotonicity was found for the effect 
of income on the risk of PTB in any single region, but 
the direction of the effect varied by region. Specifically, 
the income could statistically increase the risk of PTB 
in the full-sample model as well as in the middle. The 

Fig. 7  The odds ratios of PTB (solid line) and average PM2.5 exposure (dashed line) of five urban–rural types

Table 7  ORs of individual socio-demographic variables in model 5

OR, odds ratio; CI, confidence interval

Significant level: “*” p ≤ 0.05

Variable OR (95% CI)

Hubei East Middle West

Minority (ref: Han) 1.04 (0.93–1.16) 0.99 (0.66–1.49) 1.26 (0.88–1.80) 0.95 (0.84–1.08)

Age (ref: 25–29)

 < 20 1.32 (1.18–1.48)* 1.20 (1.01–1.44)* 1.38 (1.13–1.69)* 1.51 (1.21–1.88)*

 20–24 0.97 (0.93–1.02) 0.93 (0.87–0.99)* 0.96 (0.89–1.04) 1.18 (1.06–1.33)*

 30–34 1.25 (1.19–1.32)* 1.17 (1.09–1.26)* 1.38 (1.26–1.50)* 1.33 (1.17–1.51)*

 ≥ 35 1.86 (1.75–1.98)* 1.84 (1.69–2.00)* 1.84 (1.64–2.07)* 1.94 (1.68–2.24)*

Education (ref: secondary)

 Elementary 0.97 (0.92–1.02) 0.94 (0.88–1.01) 0.96 (0.87–1.05) 1.08 (0.96–1.22)

 Tertiary 0.98 (0.91–1.06) 0.95 (0.87–1.05) 0.95 (0.80–1.14) 1.26 (1.01–1.59)*

 Regular health checks (ref: check < 5) 0.89 (0.83–0.95)* 0.84 (0.77–0.91)* 0.91 (0.78–1.08) 1.22 (0.95–1.56)

Firstborn (ref: non–firstborn) 1.04 (0.99–1.09) 0.98 (0.92–1.04) 1.22 (1.12–1.33)* 0.98 (0.89–1.09)

Female (ref: male) 0.79 (0.76–0.82)* 0.78 (0.74–0.82)* 0.79 (0.75–0.85)* 0.84 (0.77–0.92)*

Income 1.03 (0.96–1.10) 0.96 (0.86–1.08) 0.91 (0.77–1.07) 0.94 (0.57–1.52)

Income ^2 1.04 (1.01–1.07)* 1.02 (0.98–1.06) 1.65 (1.34–2.03)* 0.69 (0.52–0.93)*
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opposite effect was noted in the west, and the effect 
was not significant in the east.

Discussion
This study aims to explore the relationships between air 
pollution and the risks of PTB as well as the risk dispari-
ties across different regions and urban–rural continua. 
We found that the results tend to support the argu-
ment that higher pollution exposure during pregnancy 
can increase the risks of PTB, but some variations were 
noted in three regions. Spatial analysis showed that the 
spatial correlation was significantly positive between air 
pollution and preterm rate in the east and west with an 
insignificant correlation in the middle. Multilevel models 
further demonstrated that the risk of PTB increased by 
12% (95% CI 7%–18%) for a 30-μg/m3 increase in average 
PM2.5 exposure during pregnancy after controlling for 
covariates and urban–rural variables in the east, while no 
significant correlation was found in other cases.

Serious air pollution has become a global problem, 
especially in many developing countries, such as China, 
India, and countries in western and northern Africa [67]. 
These conditions significantly threaten human health 
and living quality, and attention should be given to these 
issues. Although many studies have investigated the rela-
tionships between air pollution and pregnancy outcomes 
in both developed and developing countries, such as the 
US [22, 25, 68], Europe [24, 69], China [21, 70, 71] and 
other countries [72, 73], their findings are inconclusive. 
Parker et  al. hypothesized that these different results 
may be due to the composition of PM differences and 
exposure measurement errors [31]. Fleischer et  al. sug-
gested that the differences might be related to the thresh-
old effect and the stage of economic development [30]. 
However, little research has examined the effect of the 
economy-environment context of location from the per-
spective of regional and urban–rural disparities in pollu-
tion-health relationships.

In fact, another problem is the imbalance in regional 
and urban–rural development accompanied by the 
inequality in socioeconomic conditions and differ-
ences in environment quality. In the east area in this 
study, which exhibits the most developed economy and 
the most serious levels of pollution, the pollution-PTB 
relationship was significantly positive, but area-level 
income was not associated with PTB. Conversely, in the 
west, where the air pollution and economic level were 
the lowest in the province, increased area-level income 
could significantly reduce the risk of PTB, while the 
pollution-PTB relationship was insignificant. Interest-
ingly, the direction of the income effect was positive 
for PTB in the middle, indicating that economic growth 
will occur at the expense of health in some cases. We 

could infer that pollution exposure has a threshold and 
nonlinear effect [5, 30, 74], and the ranks of importance 
of income and pollution to health will vary based on 
geographical context.

Furthermore, the U-shaped pattern of the relation-
ship between economy and environmental quality may 
explain why the risk of PTB observed in our study does 
not change monotonically across the urban–rural contin-
uum. We also found that the crude disparity in the risks 
of PTB followed the same W-shaped pattern across the 
urban–rural continuum for the entire province and for all 
regions. In other words, the risks of PTB present a V- or 
U-shaped structure in urban settings and rural settings. 
This finding could indicate that an urban disadvantage 
and rural disadvantage exist simultaneously, and the low-
est risk of PTB occurs at a moderate level for both urban-
ity and rurality. Part of the disparity could be statistically 
explained by air pollution exposure. In the multilevel 
models, most of the ORs of other urban–rural types were 
increased compared with the city proper (though still less 
than one) when the PM2.5 exposure was controlled for. 
These findings potentially suggest that the air pollution 
pressure is likely an important aspect of the urban disad-
vantage. Thus, a finer classification of urban–rural areas 
is necessary. This information could potentially improve 
our understanding of the pollution-health relationships 
and be helpful for governments to develop environmen-
tal and public health policy better targeted at appropriate 
places.

It should be noted that the W-shaped pattern may 
not always be fixed for other countries and regions, and 
the shape also depends on the contexts among various 
urban–rural areas. In China, although some cities have 
been highly developed (for example, Wuhan is the larg-
est city in central China and one of the mega cities in 
the whole nation) [75], many rural areas in suburbs and 
counties are still regarded as poverty-stricken regions 
with poor living conditions, low-level medical facili-
ties and inconvenient transportation. The economy is 
driven by energy in most places in China, and thus the 
economy-environment relationship is mainly located in 
the left half of the Environmental Kuznets Curve. Similar 
circumstances likely exist in rapidly developing countries. 
However, the economy-environment contexts may differ 
in some developed countries that have experienced sub-
urbanization; thus, some suburbs have more advantages 
than the city proper in terms of both living conditions 
and environment quality. Therefore, the urban–rural 
division should take into account the actual condition 
of study area. For example, the urban hierarchy and dis-
tance to the urban core can be used as important refer-
ences. In developed countries, several indicators, such 
as the social deprivation index, may be helpful to finely 
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distinguish different types of suburbs and then further 
categorize these suburbs into urban–rural types.

Regarding other covariates, this study shows a 
U-shaped relationship between maternal age and risk 
of PTB, and firstborn and male babies have a higher 
risk of PTB than non-firstborn and female infants. Race 
and ethnicity were often considered in previous studies, 
but we did not find a significant difference in the risks 
of PTB between the minority and main nationalities in 
all regions. Regular examination during pregnancy can 
reduce the risk of PTB, which is supported by the east-
ern region results. However, the proportion of pregnant 
women with regular physical exams in the middle and 
western regions is very small, which may be related to the 
incomplete health check records acquired from the hos-
pitals in these regions.

Some limitations should be noted. First, data on some 
individual-level information, such as occupation, medi-
cal history and lifestyle variables, were not considered 
in the analysis mainly due to the unavailability of these 
data in the restricted medical record data. Second, given 
that the income variable is not available in the dataset, 
we instead used district/county-level annual income, 
which failed to distinguish the income effect of the five 
urban–rural types. Fortunately, urban–rural types were 
treated as dummy variables in the multilevel models, and 
these data could partly reflect the SES and income effect. 
Third, other pollutants, such as NO2, SO2, O3 [5, 76] and 
temperature [77–79], which might also be risk factors 
of PTB, were not controlled in this study. It should be 
noted that PM2.5 is the main air pollutant in most regions 
of China, and the spatial variation of temperature in the 
long term is not notable. As indicated in some prior stud-
ies, the adjustment of multi-pollutants and temperature 
was insignificant [5, 27]. However, without controlling 
for these factors, the effect of PM2.5 might be overesti-
mated. Finally, given the uncertainty and unavailability of 
where women’s activities took place in daily life, the air 
pollution concentration of registered residences may not 
accurately reflect the real air pollution exposure to preg-
nant women. Future research could measure the mobil-
ity-based air pollution exposure for pregnant women and 
estimate their health effects.

Conclusions
This study aimed to examine regional and urban–rural 
disparities in the relationships between PTB risk and 
air pollution in Hubei Province, China, and to deter-
mine how the risk changes as urbanity decreases and 
to what extent air pollution exposure during pregnancy 
can explain the variations. Spatial correlation analysis 
indicated that air pollution exposure and PTB exhib-
ited a significant and positive correlation in areas with 

serious air pollution burden. Multilevel logistic regres-
sions showed that the risk of PTB in the entire province 
and all regions followed the same W-shaped pattern as 
urbanity decreases and rurality increases. The model-
ling results also found that air pollution exposure during 
pregnancy could increase the risk of PTB and that a high 
level of air pollution exposure may be an important dis-
advantage for urban pregnant women in this setting.
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