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Abstract 

Background: Virtual neighborhood audits have been used to visually assess characteristics of the built environment 
for health research. Few studies have investigated spatial predictive properties of audit item responses patterns, which 
are important for sampling efficiency and audit item selection. We investigated the spatial properties, with a focus on 
predictive accuracy, of 31 individual audit items related to built environment in a major Metropolitan region of the 
Northeast United States.

Methods: Approximately 8000 Google Street View (GSV) scenes were assessed using the CANVAS virtual audit tool. 
Eleven trained raters audited the  360° view of each GSV scene for 10 sidewalk-, 10 intersection-, and 11 neighborhood 
physical disorder-related characteristics. Nested semivariograms and regression Kriging were used to investigate the 
presence and influence of both large- and small-spatial scale relationships as well as the role of rater variability on 
audit item spatial properties (measurement error, spatial autocorrelation, prediction accuracy). Receiver Operator 
Curve (ROC) Area Under the Curve (AUC) based on cross-validated spatial models summarized overall predictive accu-
racy. Correlations between predicted audit item responses and select demographic, economic, and housing charac-
teristics were investigated.

Results: Prediction accuracy was better within spatial models of all items accounting for both small-scale and large- 
spatial scale variation (vs large-scale only), and further improved with additional adjustment for rater in a majority of 
modeled items. Spatial predictive accuracy was considered ‘Excellent’ (0.8 ≤ ROC AUC < 0.9) for full models of all but 
four items. Predictive accuracy was highest and improved the most with rater adjustment for neighborhood physi-
cal disorder-related items. The largest gains in predictive accuracy comparing large- + small-scale to large-scale only 
models were among intersection- and sidewalk-items. Predicted responses to neighborhood physical disorder-related 
items correlated strongly with one another and were also strongly correlated with racial-ethnic composition, socio-
economic indicators, and residential mobility.

Conclusions: Audits of sidewalk and intersection characteristics exhibit pronounced variability, requiring more 
spatially dense samples than neighborhood physical disorder audits do for equivalent accuracy. Incorporating rater 
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Background
Characteristics of the built environment measured 
through visual observation have been associated with 
various health-related factors and outcomes, including 
physical activity [1, 2], obesity [3], injuries [4], violence 
[5], diabetes [6], and depression [7, 8]. For example, one 
experimental study of vacant lot “cleaning and green-
ing”—removal of garbage and debris, repairing structures 
or improving yard conditions—reported lower resident 
perception of crime and fear for safety along with lower 
police-reported crime comparing experimental to con-
trol regions [5]. Other studies have found more walk-
able environments—presence of sidewalks, condition 
of sidewalks, density of destinations—associated with 
greater physical activity and less diabetes [1, 2, 6]. Besides 
physical activity, hypothesized pathways through which 
built environment factors might influence health include 
substance use and psychosocial stress [9]. Identifying 
specific built environment characteristics that might be 
associated with health outcomes is important for moti-
vating place-based interventions of the built environment 
[5, 10, 11]. However, associations of many of these studies 
are small, underscoring the importance of well-designed 
measures of the built environment that maximize accu-
racy [12].

Neighborhood auditing (i.e., “systematic social obser-
vation”, “systematic field observation”) is a systematic 
method used to assess specific built environment char-
acteristics that might influence health behaviors and 
outcomes [13–15]. Such audits were initially conducted 
by in-person observations along street segments [16], 
but recent and readily available residential imagery from 
mapping- and advertisement-based businesses such as 
Google (i.e., Google Street View) have led to develop-
ment of virtual neighborhood audit tools and proto-
cols [14, 17–20]. Studies comparing in-person to virtual 
neighborhood audits have concluded that virtual audits 
are reliable, valid, time-, and resource-efficient methods 
for assessing visual neighborhood characteristics, espe-
cially when those characteristics are conspicuous and 
more stable over time (e.g., sidewalk present, pedestrian 
signal, building conditions, etc.) [17, 19, 21–25].

Although recognizing the potential for large-scale built 
environment characterization, most virtual neighbor-
hood audit studies have assessed pre-defined and small 
areas surrounding the residence of participants of an 
extant health study [21]. Few studies randomly sampled 

potential audit locations with the intent of generating 
geographically-generalizable estimates of built environ-
ment characteristics across large areas (larger than typical 
U.S. counties or large cities) [26]. In line with the original, 
in-person practice of neighborhood audits, most virtual 
audit tools and protocols that have been developed to 
date utilize street segments surrounding the residence of 
study participants as the sampling unit. Segment-based 
audits have prevailed over time despite previous studies 
reporting that such commonly audited built constructs 
as walkability and neighborhood physical disorder—indi-
cated by presence of garbage, graffiti, poor building and 
yard conditions, etc.—positively spatially autocorrelate 
at distances up to 1000 meters [27–30]. This spatial auto-
correlation, or notion that “…pairs of observations taken 
nearby are more alike than those taken farther apart” 
[31] suggests that segment-based audits might not be the 
most efficient sampling unit because information across 
a typical segment is partially redundant. Despite the few 
reports of spatially autocorrelated constructs, the spa-
tial trend, autocorrelation, and predictive performance 
(hereafter, ‘spatial properties’) of models of individual 
audit items has yet to be systematically and thoroughly 
investigated.

A recent adaptation to virtual audits has been devel-
oped called “drop-and-spin” where observations are 
limited to a single  360° view around a virtual scene, 
as opposed to traversing the entire segment [32]. This 
method was explicitly developed to test whether a surface 
of estimated built environment measures across a study 
region could be generated based on the spatial proper-
ties of resulting audit responses. Previously reported 
test–retest and inter-rater reliability of drop-and-spin 
auditing is similar to that of segment-based audits of 
identical items [32]. Moreover, the median item-location 
rating time of “drop-and-spin” auditing (7.3  s) is similar 
to that of the fastest reported segment-based method 
(7.9 s) [20], and twice as fast as typical times (15 s) [4, 14, 
17–20, 25, 26, 33–38]. However, it is not known whether, 
or to what degree, drop-and-spin audit responses exhibit 
spatial properties that are required for accurate spatial 
prediction.

Estimates of the spatial properties of neighborhood 
audit item response patterns are important for several 
reasons. First, investigation of “drop-and-spin” audit 
item-specific spatial properties is critical for motivat-
ing whether point-based auditing might be used in 

effects into spatial models improves predictive accuracy especially among neighborhood physical disorder-related 
items.
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place of segment-based. When audit item responses 
demonstrate spatial autocorrelation and high spatial 
predictive accuracy, point-based audits of a sample 
of points may characterize neighborhood conditions 
as accurately as a segment-based census of street 
segments but at lower cost. Lack of any spatial com-
ponents to audit responses would indicate that drop-
and-spin auditing is only useful at the point location 
assessed and cannot be generalized any further.

Second, investigation of spatial prediction perfor-
mance of specific audit items, segment- or point-
based, has yet to be investigated. Such results are 
important as use of such spatial prediction methods 
to yield estimates of built environment characteristics 
across epidemiologic study regions have been increas-
ingly recommended [39–42], including characteristics 
assessed from virtual neighborhood audit studies [25].

Third, previous audit studies of rater-reliability 
indicate large variability in test–retest and inter-rater 
agreement of audit item responses [23, 27, 32, 43]. If 
this disagreement is systematic as opposed to random 
(e.g., one rater consistently rates the same sidewalk 
quality as worse than another does), then it is possi-
ble to improve spatial prediction accuracy by account-
ing for this source of inaccuracies in measurement [44, 
45].

Fourth, observable built environment features such 
as pedestrian amenities are indicators of historical 
social processes that have distinct spatial distributions 
[46, 47]. Individual audit item indicators of health-
relevant constructs vary at different spatial scales 
and understanding these variations is important to 
informing how best to build constructs from response 
patterns as well as the processes influencing these 
patterns. For example,  number of traffic lanes and 
presence of sidewalks are both indicators of pedes-
trian-friendliness at a given location [48], but number 
of lanes is very street-dependent, whereas presence of 
sidewalks is not, and so these should not be combined 
into a single measure for spatial interpolation.

The purpose of this study was to investigate the 
spatial properties, with a focus on spatial prediction, 
of 31 commonly-assessed characteristics of the built 
environment measured using the newly developed 
drop-and-spin virtual neighborhood audit method. 
Relationships between predicted audit item responses 
as well as between predicted audit responses and vari-
ous neighborhood characteristics were explored to 
inform relationships within audit item responses and 
between social factors and audit item responses.

Methods
Study sample
Virtual neighborhood audit locations were generated 
across non-highway roads within Essex County, NJ. New 
Jersey is the most densely populated U.S. state (1195.5 
people per square mile), and Essex is the most populous 
county in NJ (783,969) [49]. Essex County contains New-
ark, NJ and other densely populated urban areas to the 
east. Newark International airport is the area with few 
audit locations that is immediately southeast of the inset 
(Fig. 1). Numerous suburban communities and non-resi-
dential parks (i.e., indicated by no roads/audit locations) 
lie to the less dense western region. Details of the sam-
pling scheme, audit training protocol, audit item preva-
lence, and audit item reliability have been previously 
described [32]. In brief, iterative GIS operations—ran-
dom point generation, point-to-point near distance cal-
culation, integration of points within a specific distance 
of separation, event collection, snapping to road file—
were completed to generate points along non-highway 
roads. In order to have enough power to test for spatial 
autocorrelation, which studies of similar constructs have 
reported occur within distances of 1000 meters, the 
above GIS operations were repeated until the average 
point-to-point near distance was within 1 standard devi-
ation of 150 meters (mean = 142 meters, standard devia-
tion = 18 meters), resulting in 8262 total candidate audit 
locations (25.3 per square km) (Fig. 1).

Eleven raters were trained during in-person sessions 
using a standardized protocol and manual [32]. Thirty-
one audit items—10 intersection-related, 10 sidewalk-
related, and 11 neighborhood physical disorder-related, 
were assessed at each audit location. Raters were 
assigned audit locations at random throughout the study 
region. Groups of audit items were assigned to raters 
according to item similarity (i.e., intersection-related or 
sidewalk-related) or belonging to a theoretical construct 
(i.e., neighborhood physical disorder/aesthetics). Full 
audit item wording and response values are displayed 
in Table  1. The virtual neighborhood audit platform 
called CANVAS was used in this study Although numer-
ous virtual auditing platforms exist (see Rzotkiewicz 
et  al.), CANVAS is arguably the most frequently used 
platform and efficiently combines GSV scene visualiza-
tion with audit items in a consistent and clear interface 
[14, 21]. Audit items were chosen from previous scales, 
or theoretically related to constructs of previous scales, 
that assess observable built environment characteris-
tics related to walkability, pedestrian infrastructure, and 
physical disorder [13, 29, 50, 51].



Page 4 of 20Plascak et al. Int J Health Geogr           (2020) 19:21 

Statistical analysis
A workflow of all statistical analyses is displayed in Fig. 2. 
Nonparametric, spatially varying probability surfaces of 
each item response = ‘Yes’/’1’ (Table  1) were created to 
visualize the spatial distribution of each binomially dis-
tributed item response [52]. Estimated probabilities were 
calculated following an isostropic, Gaussian kernel where 
the kernel smoothing bandwidth distance was selected 
via cross-validation as the distance which minimized the 
negative likelihood among all candidate distances [53]. 
Each resulting probability surface was shaded via a diver-
gent color scheme with red and blue hue proportional to 
estimated probability of ‘Yes’/’1’ and white equal to the 
overall probability of each item. Thus, dark red areas are 
higher than average probability of ‘Yes’/’1’ and dark blue 
areas are lower than average probability of ‘Yes’/’1’.

Item-specific analysis of spatial structure and pre-
diction accuracy with and without statistical adjust-
ment for rater proceeded as follows. First, we divided 
the data into 90-10 training-validation datasets. Using 

the training dataset, we then fit a logistic regression 
model of audit item responses, adjusting for 3rd order 
spatial covariates only. This detrending for large spatial 
scale relationships is recommended to meet the spa-
tial statistical assumption of spatial stationarity, which 
in this case requires that audit item response patterns 
depend only on their relative positioning between one 
another and not their absolute positioning within the 
study region [31]. Next, we fit the same model of audit 
item responses with the addition of rater as an addi-
tional covariate (i.e., rater identity as a 4-level dummy 
code). Adjustment for rater will allow us to investi-
gate whether variation in audit item responses by rater 
influences spatial prediction performance of audit item 
response patterns. Deviance residuals of each model 
were then assessed for spatial structure. The full model 
with notation for the Deviance residual was as follows: 

Fig. 1 8,262 candidate neighborhood audit locations assessed for 31 different built environment characteristics, Essex County, New Jersey
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Table 1 Audit item name, full wording, response categorization, and prevalence

Audit item (n/% yes) Question Response categorization

Neighborhood physical disorder-related

 Garbage (3285/41.2) Is there garbage, litter, or broken glass in the 
street or on the sidewalks (≥ 5 items)?

Yes (1) vs no (2)

 Abandoned cars (13/0.2) Are there abandoned cars? Yes (1) vs no (2)

 Building conditions ≥ moderate (6349/86.3) How would you rate the condition of most of the 
buildings?

Very well/Moderately well kept (1) vs fair/poor 
condition (2)

 Yard conditions ≥ moderate (5388/87.7) How would you rate the condition of most of the 
yards?

Very well/Moderately well kept (1) vs fair/poor 
condition (2)

 Dumpster (706/8.9) Are there dumpsters visible? ≥1 (1) vs None (2)

 Graffiti (904/11.3) Is there graffiti, or evidence of graffiti that has 
been painted over, on buildings, signs, or walls?

Yes (1) vs no (2)

 Boarded/burned building (502/6.3) Do you see boarded up, abandoned, or burned 
out buildings?

Yes (1) vs no (2)

 Outdoor seating (2131/27.1) Do you see any outdoor seating (e.g., benches, 
porch swings, restaurant seating)?

Yes (1) vs No (2)

 Team sports (187/2.4) Do you see any team sports equipment (e.g., 
street hockey nets, soccer nets, basketball 
hoops)?

Yes (1) vs no (2)

 Yard decorations (3932/49.9) Do you see any exterior or yard decorations (e.g. 
banners/flags, seasonal decorations, water 
fountains/statues)?

Yes (1) vs no (2)

 Fences (6390/80.3) Do you see fences separating adjoining yards/
properties or separating yards from the street?

Yes (1) vs no (2)

Sidewalk-related

 Sidewalk present (5462/68.2) What type of sidewalk or path (paved or 
unpaved) is there?

Sidewalk (1) vs none (2)

 Complete sidewalk (4948/90.4) Is the sidewalk complete/continuous? Complete (1) vs incomplete (2)

 Sidewalk condition (3535/64.7) In what condition is the sidewalk or pedestrian 
path?

Good (1) vs fair/poor (2)

 Sidewalk width (872/15.9) How wide is the sidewalk? ≥ 4 feet (1) vs < 4 feet (2)

 Sidewalk from curb distance (71/1.3) How far is the sidewalk or path from the curb? ≥ 5 feet (1) vs < 5 feet (2)

 Car obstruction (340/6.2) Do parked cars obstruct the path? Yes (1) vs no (2)

 Garbage can obstruction (301/5.5) Do garbage cans obstruct the path? Yes (1) vs no (2)

 Pole or sign obstruction (262/5.8) Do poles or signs obstruct the path? Yes (1) vs no (2)

 Other obstruction (445/8.1) Does anything else obstruct the path? Yes (1) vs no (2)

 Curb cuts (2585/52.1) Do you see any curb cuts? Yes (1) vs no (2)

Intersection-related

 Clear intersection (4741/60.1) Can you clearly see an intersection? Yes (1) vs no (2)

 Pedestrian crossing sign (860/17.9) Is there a pedestrian crossing warning sign? Yes (1) vs no (2)

 Pedestrian signal (718/15.1) Is there a pedestrian signal? Yes (1) vs no (2)

 Pedestrian crossing marks (2975/64.0) Consider places intended for pedestrians to cross 
the street. Are these places marked for pedes-
trian crossing?

All/some (1) vs none (2)

 Type of pedestrian crosswalk marks (2076/68.4) How is the road marked at crosswalks? Painted solid lines (1) vs other (2)

 Traffic signal type (3438/73.8) What kind of traffic signal can you see? Traffic signal, stop sign, yield sign (1) vs none (2)

 One-way street (846/10.7) Is the street a one-way or a two-way street? One-way (1) vs two-way (2)

 Number of lanes (1183/14.9) How many lanes are there for cars? Many (2 +) (1) vs few (≤ 2) (2)

 Presence of highway (579/7.3) Can you see a highway (elevated or below 
ground) here?

This is a highway (1) vs not a highway (2)

 Highway is barrier (29/19.9) Is the highway a barrier to walking? Cannot be overcome (1) vs can be overcome (2)
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Fig. 2 Flow chart of analysis plan to investigate the spatial properties of neighborhood audit item responses
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where the function g(x) is the logit of the probability of 
the audit response = ‘1’/’Yes’, latitude and longitude val-
ues were centered (i.e., mean = 0) in anticipation of sub-
sequent algorithm convergence issues and to minimize 
polynomial estimate collinearity, rater 1–3 are dummy 
coded with rater 4 as the reference level, and ε represents 
the residual which is subsequently analyzed for small-
scale spatial structure. Collectively, β 0–7 describe the 
large-scale spatial trend, β 8–10 rater variability, and ε 
variability in audit item responses not explained by 3rd 
order spatial trends or raters, but which could contain 
spatially autocorrelated audit item responses that can 
be used to predict unknown residuals as a function of 
known residual values and the distances between known 
and unknown values.

Experimental semivariograms of Deviance residuals 
within the training dataset were calculated for each audit 
item, with and without adjustment for rater, using identical 
parameters (see Additional file 1 "Supplementary methods 
of spatial analyses": for details of spatial analyses). Local 
Ordinary Kriging (OK) was performed to predict Deviance 
residuals from audit locations within the validation data-
set based on Deviance residuals and estimated covariance 
parameters from theoretical semivariograms of the valida-
tion dataset. Local OK, as opposed to global OK, was per-
formed for practical reasons; Kriging based on all points 
within the validation dataset was computationally prohibi-
tive and likely statistically unnecessary given the estimated 
ranges that were oftentimes far shorter than 13.2 km, let 
alone 26.4  km (Table  2). The local OK radius was set at 
1.3 km (1/10th max semivariogram distance) or the mini-
mum distance required to include 30 training points in the 
prediction of the Deviance value of the specific validation 
location, as recommended [54]. Others have used simi-
lar “Regression Kriging” or “Kriging with External Drift” 
methods based on manual detrending [44, 45, 55, 56].

The assumption of spatial isotropy, or invariance of 
spatial structure as a function of direction between loca-
tions, was assessed for each set of Deviance residuals by 
fitting directional-specific experimental and theoretical 
semivariograms via the same procedures and param-
eters used to fit omnidirectional semivariograms. Eight 
separate directions, uniformly dividing the unit circle 

(0°/180°, 22.5°/202.5°, 45°/225°, etc.), were specified and 
anisotropy assessed visually based on experimental and 
theoretical semivariograms. Qualitative assessments of 
anisotropy violations were made—‘None’, ‘≥ Mid-range’, 
‘Yes’—based on a combination of semivariogram behav-
ior about the nugget, sill, and range. Comparing within 
directional semivariograms as well as between directional 
and omnidirectional semivariograms, ‘None’ indicates 
nearly identical semivariograms, ‘≥ Mid-range’ indicates 
very similar semivariogram properties within estimated 
ranges of the majority of semivariograms, and ‘Yes’ indi-
cates evidence of anisotropy (with directional violation 
noted).

Prediction accuracy was measured by root mean 
squared prediction error (RMSPE) calculated from pre-
dicted and observed audit responses within the valida-
tion datasets of each audit item model (with and without 
adjustment for rater). Kriging-predicted audit item 
response residuals were calculated by back-transforming 
the Kriging-estimated Deviance residuals to raw residu-
als. Validation dataset trend components were calculated 
by the score method and using the model built from 
the training dataset (e.g., mean response, 3rd order spa-
tial trend, and rater adjustment if applicable). The pre-
dicted audit item response of the validation dataset was 
obtained by summing the Kriging-predicted residual 
and logistic regression-scored trend component. Percent 
change of RMSPE comparing models adjusted for rater 
to those not rater-adjusted were calculated; negative% 
change of RMSPE indicating that adjustment for rater 
yielded lower audit item predictive error. Area Under the 
Curve (AUC) of the Receiver Operator Curve (ROC) of 
the validation datasets were calculated to assess the over-
all predictive ability of the above modeling. In these ROC 
AUC calculations of the validation dataset, observed 
audit item response was the dependent variable and 
predicted response probability (e.g., Kriging-predicted 
residual + logistic regression-scored trend) was the sin-
gle independent variable measured as a continuous vari-
able. Percent change of ROC AUC comparing models 
adjusted for rater to those not rater-adjusted were calcu-
lated where, contrary to above, positive% change of ROC 
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Table 2 Small-scale spatial properties of neighborhood audit item responses, Essex County, NJ

Audit item Detrending Theoretical 
semivariogram

Nugget Partial sill/b Range (km)/p RMSPE % RMSPE 
change (of rater 
adjustment)

Evidence 
of anisotropy

Garbage 3rd order spatial Sine hole-Matern 0.935 0.063, 0.13 4.731, 0.871 0.3940 None

3rd order spa-
tial + rater

Sine hole-Matern 0.727 0.063, 0.104 4.385, 0.795 0.3376 –14.31 None

Abandoned Cars 3rd order spatial Sine hole-Sine 
hole

0 0.012, 0.007 1E−6, 1E−6 0.0491 NA

3rd order spa-
tial + rater

Spherical-Sine 
hole

6.80E−04 0.16, 0.002 1E−6, 0.762 0.0489 − 0.32 NA

Building condi-
tions ≥ moderate

3rd order spatial Powera-Sine hole 0.532 1E−6, 0.0247 0.513, 2.470 0.2806 ≥ Mid-range

3rd order spa-
tial + rater

Sine hole-sine hole 4.70E−06 0.025, 0.493 2.489, 1E−6 0.2704 − 3.63 ≥ Mid-range

Yard condi-
tions ≥ moderate

3rd order spatial Sine hole-Matern 0.459 0.045, 0.019 2.614, 1E−6 0.2596 ≥ Mid-range

3rd order spa-
tial + rater

Powera-Sine hole 0.429 1.4E−6, 0.045 0, 2.655 0.2455 − 5.44 ≥ Mid-range

Dumpster 3rd order spatial Matern-sine hole 0.501 1.0E−6, 0.007 9.052, 1.650 0.2596 ≥ Mid-range

3rd order spa-
tial + rater

Sine hole-sine hole 0.485 0.015, 1.0E−6 0.821, 6.511 0.2567 − 1.11 ≥ Mid-range

Graffiti 3rd order spatial Sine hole-Gaussian 0.025 0.017, 0.421 1.020, 1.0E−6 0.2606 ≥ Mid-range

3rd order spa-
tial + rater

Matern-Sine hole 0.433 6.3E−5, 0.016 10.141, 1.028 0.2566 − 1.54 ≥ Mid-range

Boarded/burned 
building

3rd order spatial Cubic 0.032 0.306 0.231 0.2138 ≥ Mid-range

3rd order spa-
tial + rater

Spherical-Matern 0.004 1.0E−6, 0.333 4.085, 0.094 0.2140 0.12 ≥ Mid-range

Outdoor seating 3rd order spatial Sine hole 1.131 0.015 4.405 0.4222 None

3rd order spa-
tial + rater

Sine hole-spherical 0.006 0.011, 1.089 4.385, 1.0E−6 0.4078 − 3.41 None

Team sports 3rd order spatial Powera-sine hole 0.1658 8.6E−5, 0.023 2, 6.4E−5 0.1352 None

3rd order spa-
tial + rater

Powera 0.186 8.70E−05 2 0.1349 − 0.22 None

Yard Decorations 3rd order spatial Sine hole-gaussian 1.095 0.046, 0.146 4.591, 0.649 0.4208 None

3rd order spa-
tial + rater

Sine hole-Matern 0.023 0.048, 1.141 4.652, 0.278 0.4003 − 4.87 None

Fences 3rd order spatial Gaussian-Expo-
nential

0.65 0.109, 0.200 10.758, 0.435 0.3443 ≥ Mid-range

3rd order spa-
tial + rater

Sine hole-matern 4.10E−05 0.064, 0.826 10.723, 0.351 0.3311 − 3.81 ≥ Mid-range

Sidewalk present 3rd order spatial Matern-sine hole 0 0.904, 0.069 1.869, 3.022 0.2952 ≥ Mid-range

3rd order spa-
tial + rater

Powera-matern 0.558 2.70E−4, 0.381 2, 1.683 0.3035 2.8 ≥ Mid-range

Complete sidewalk 3rd order spatial Gaussian-sine hole 0.443 0.164, 0.015 7.648, 2.542 0.2512 None

3rd order spa-
tial + rater

Gaussian-spherical 0.432 0.107, 0.070 8.959, 10.3981 0.2511 − 0.01 None

Sidewalk condition 3rd order spatial Gaussian-Sine hole 1.225 1.8E−6, 0.029 1.0E−6, 2.409 0.4403 None

3rd order spa-
tial + rater

Exponential-sine 
hole

1.106 1.0E−6, 0.034 4.139, 2.495 0.4297 − 2.39 None

Sidewalk width 3rd order spatial Gaussian-expo-
nential

0.019 0.637, 0.005 0.099, 1.0E−6 0.2870 None

3rd order spa-
tial + rater

Cubic-matern 0.11 1.0E−6, 0.538 4.782, 0.109 0.2779 − 3.18 None

Sidewalk from 
Curb Distance

3rd order spatial Sine hole-Spher-
ical

0.04 0.076, 0.011 1.0E−6, 3.918 0.0938 ≥ Mid-range

3rd order spa-
tial + rater

Sine hole-expo-
nential

0.036 0.012, 0.076 3.953, 1.0E−6 0.0936 − 0.15 ≥ Mid-range



Page 9 of 20Plascak et al. Int J Health Geogr           (2020) 19:21  

Table 2 (continued)

Audit item Detrending Theoretical 
semivariogram

Nugget Partial sill/b Range (km)/p RMSPE % RMSPE 
change (of rater 
adjustment)

Evidence 
of anisotropy

Car Obstruction 3rd order spatial Gaussian-cubic 0.09 9.5E−4, 0.320 1.0E−6, 0.251 0.2003 ≥ Mid-range

3rd order spa-
tial + rater

Spherical-spherical 0.006 0.368, 0.034 0.208, 1.0E−6 0.1996 − 0.32 ≥ Mid-range

Garbage can 
obstruction

3rd order spatial Powera 0.388 1.60E−04 2 0.1979 None

3rd order spa-
tial + rater

Powera-sine hole 0.372 1.4E−4, 0.014 2, 1.0E−6 0.1974 − 0.27 None

Pole or Sign 
obstruction

3rd order spatial Powera 0.338 5.90E−04 2 0.1620 ≥ Mid-range

3rd order spa-
tial + rater

Powera-sine hole 0.018 6.2E − 5, 0.298 2, 1.0E−6 0.1624 0.29 ≥ Mid-range

Other obstruction 3rd order spatial Spherical-gaussian 6.10E−04 2.2E−4, 0.495 1.0E−6, 0.067 0.2450 None

3rd order spa-
tial + rater

Matern-matern 2.80E−04 1.6E−4, 0.491 1.0E−6, 0.068 0.2427 − 0.93 None

Curb Cuts 3rd order spatial Matern-sine hole 9.00E−09 1.345, 0.026 0.094, 4.131 0.4751 None

3rd order spa-
tial + rater

Sine hole-Powera 1.186 6.1E−3, 0.030 4.303, 0.360 0.4587 − 3.45 None

Clear Intersection 3rd order spatial Sine hole-Matern 3.30E−05 0.028, 1.272 12.078, 0.409 0.4148 None

3rd order spa-
tial + rater

Sine hole-matern 9.20E−05 0.028, 1.271 11.815, 0.410 0.4143 − 0.12 None

Pedestrian Cross-
ing Sign

3rd order spatial Spherical-Cubic 0.383 1.0E−6, 0.494 6.008, 0.258 0.3739 None

3rd order spa-
tial + rater

Spherical-Matern 0.242 1.0E−3, 0.630 1.0E−6, 8.550 0.3747 0.2 None

Pedestrian Signal 3rd order spatial Spherical-matern 0.063 6.8E−4, 0.713 1.0E−6, 0.148 0.3348 ≥ Mid-range

3rd order spa-
tial + rater

Matern-matern 0.117 4.5E−3, 0.646 8.045, 0.1523 0.3326 − 0.67 ≥ Mid-range

Pedestrian crossing 
marks

3rd order spatial Sine hole-Matern 0.649 0.074, 0.416 8.039, 0.991 0.3634 ≥ Mid-range

3rd order spa-
tial + rater

Sine hole-matern 0.597 0.068, 0.447 7.660, 0.988 0.3676 1.15 ≥ Mid-range

Type of pedestrian 
crosswalk marks

3rd order spatial Sine hole-gaussian 0.669 0.053, 0.457 3.671, 0.259 0.3582 Yes, E-SE

3rd order spa-
tial + rater

Sine hole-matern 0 0.052, 1.124 3.672, 0.187 0.3530 − 1.44 Yes, E-SE

Traffic signal type 3rd order spatial Sine hole-cubic 0.8 0.119, 0.215 11.930, 0.631 0.3786 None

3rd order spa-
tial + rater

Matern-spherical 0.779 0.174, 0.226 11.967, 0.583 0.3763 − 0.59 None

One-way Street 3rd order spatial Exponential-
matern

0.081 1.0E−6, 0.462 6.700, 0.146 0.2397 ≥ Mid-range

3rd order spa-
tial + rater

Sine hole-expo-
nential

0.005 0.041, 0.491 0.182, 0.100 0.2412 0.62 ≥ Mid-range

Number of lanes 3rd order spatial Exponential-sine 
hole

0.493 0.188, 0.057 0.690, 2.295 0.3066 ≥ Mid-range

3rd order spa-
tial + rater

Matern-spherical 0.22 0.364, 0.155 0.210, 3.020 0.2880 − 6.09 ≥ Mid-range

Presence of 
highway

3rd order spatial Powera-matern 0.126 1.9E−4, 0.236 2, 0.738 0.1611 ≥ Mid-range

3rd order spa-
tial + rater

Powera-matern 0.126 1.9E−4, 0.236 2, 0.737 0.1616 0.31 ≥ Mid-range

Highway is barrier 3rd order spatial Cubic-sine hole 0 0.772, 0.206 0.412, 2.597 0.4451 ≥ Mid-range

3rd order spa-
tial + rater

Sine hole-Gaussian 0.043 0.180, 0.641 2.439, 1.0E−6 0.4690 5.37 ≥ Mid-range

All kriging was local, with radius set at 1.3 km (approx 1/20th of largest distance between points) or the shortest distance to include 30 neighbors in Kriging 
calculations
a  Power semivariogram b and p are not partial sill and range values and cannot be compared to values of other semivariograms
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AUC indicated that adjustment for rater yielded greater 
audit item predictive ability. The following interpreta-
tions of ROC AUC accuracy were used: ROC = 0.5 ‘None’, 
0.7 ≤ ROC AUC < 0.8 ‘Acceptable’, 0.8 ≤ ROC AUC < 0.9 
‘Excellent’, ROC AUC ≥ 0.9 ‘Outstanding’ [57].

Lastly, correlations between predicted audit item 
responses and select block group-level census variables 
were calculated to explore relationships between vari-
ous audit items, sociodemographic, and neighborhood 
features. Audit item response predictions were based 
on the full model and a separate set of 10 locations ran-
domly generated within each of Essex County’s 671 block 
groups (i.e., 6710 prediction locations). As correlations 
were block group-level, the 10 audit item response val-
ues per a block group were treated as imputed data and 
analyzed within a multiple imputation framework, as 
has been previously done [27]. Block group-level per-
centage of non-Hispanic African American residents (% 
AA), percentage of HispanicLatinx residents /(% Latinx), 
percentage of non-Hispanic White residents (% NHW), 
percentage of residents who moved within the previ-
ous year, percentage of working-age people who walk to 
work, median year of homes’ construction, median gross 
rent, median owner occupied home value, and popula-
tion density were from the 2011–2015 American Com-
munity Survey [58]. Data management and analyses were 
conducted within 64-bit, desktop versions of ArcGIS 
v10.5, SAS v9.4, and the Spatstat package within R v3.5.2 
[59–61]. All spatial data were projected Alber’s Equidis-
tant Conic to preserve accurate distance calculations.

Results
Spatially varying probability surfaces of each audit item’s 
response indicate largely unique geographic patterns 
across audit items. There are, however, notable trends 
especially when audit item response patterns are con-
sidered within item groupings. Presence of garbage, 
abandoned cars, < moderate building or yard conditions, 
dumpsters, graffiti, and boarded up/burned out buildings 
appear to be concentrated in the southeast portion of the 
study region (Newark), and hence, appear to correlate 
with another (Fig.  3a–g). Presence of outdoor seating, 
team sports in public spaces, and yard decorations tend 
to occur at lower than average probabilities within the 
southeast, but also appear to be highly variable through-
out the remainder of the study region. Sidewalk pres-
ence and complete sidewalks were estimated to be higher 
towards the eastern portion of the region. Among areas 
with sidewalks, sidewalks of good condition tended to 
be less commonly found within the southeast. Sidewalks 
wider than 4 feet were more likely in the eastern por-
tions. Sidewalks obstructed by either a car, pole or sign, 
or something else (besides garbage can) were more likely 

in the southeast of the study region. Presence of an inter-
section was concentrated in the more densely populated 
eastern section as was presence of pedestrian crossing 
signs, signals, and marked crosswalks.

Results of theoretical semivariogram fitting by 
weighted least squares regression are shown in Table  2. 
There are several general results worth noting from these 
fitted semivariograms of the detrended audit items. First, 
the majority of audit items were best estimated, in terms 
of lower sums of squares error, by nested semivariograms 
as opposed to a single theoretical semivariogram. The 
better fitting nested semivariograms indicate that audit 
item responses spatially autocorrelate at more than one 
scale. For example, the best fitting semivariograms to 
the 3rd order spatially-detrended response pattern of 
the ‘Garbage’ audit item suggests a sharp rise in semi-
variance from an initial nugget of 0.935 to a semivariance 
of 1.065 (Matern partial sill of 0.13) over a distance of 
0.871 km (Matern range), then a second and flatter rise 
over a distance of 4.731 km (sine hole range) until the sill 
(1.128 = 0.935 (nugget) + 0.13 (Matern partial sill) + 0.063 
(sine hole partial sill)). Second, a majority (21/31) of 
theoretical semivariogram nuggets of audit items addi-
tionally detrended for ‘rater’ were lower than theoretical 
semivariogram nuggets of audit items detrended only for 
3rd order spatial relationships. As the nugget is a meas-
ure of measurement error or short-distance spatial het-
erogeneity, lower nuggets of rater-detrended audit item 
responses could indicate that rater disagreement in item 
responses (e.g., lower test–retest and inter-rater reliabil-
ity) might increase short-distance measurement error. 
Third, RMSPE of rater-adjusted audit item responses 
were lower than RMSPE of responses adjusted for spa-
tial trend only in 23 of 31 audit items, indicating that 
rater adjustment of these 23 audit items resulted in 
improved prediction accuracy via the cross-validation 
Kriging models. Fourth, several audit item experimental 
semivariogams best fit by nested theoretical semivari-
ograms indicate a small nugget which coincides with a 
large 1st partial sill over a very small range followed by 
a 2nd, smaller partial sill and larger range. Audit item 
semivariograms characterized this way have at least one 
short-distance binned empirical semivariogram value 
with markedly low semivariance (i.e., high correlation at 
short distance), which leads to a fitted theoretical semi-
variogram that is “bent” downwards by the influence of 
the low variance values (Additional file 1: Figs. S1a–ae 1) 
and 2)). Fifth, there was no evidence of anisotropy among 
13 audit items—4 neighborhood physical disorder-
related, 6 sidewalk-related, 3 intersection-related—and 
evidence of anisotropy “≥ Mid-range” among 16 items 
(Additional file  1: Figs.  S2a–ae 1) and 2)). As an exam-
ple of potential ≥ Mid-range anisotropy, the sills (~ 0.6) 
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a bGarbage  Abandoned Cars

cBuilding Condi ons ≥ Moderate d Yard Condi ons ≥ Moderate

eDumpsters (≥ 1) f Graffi

gBoarded/Burned Buildings hOutdoor Sea ng in Private Spaces

i Team Sports in Public Spaces j Yard Decora ons

kFences on Residen l Property i Sidewalk Present

mComplete Sidewalk n S idewalk Cond on

oSidewalk Width pSidewalk from Curb Distance

q Car Obstruc on r Garbage Can Obstruc on

s Pole or Sign Obstruc on t Other Obstruc on

u Curb Cuts v Clear Intersec on

w Pedestrian Crossing Sign x Pedestrian Signal

Fig. 3 a–ae Nonparametric, spatially varying probability surfaces of each audit item response =”Yes”/”1”, Essex County,  NJ1. 1 Shaded via a 
divergent color scheme with red and blue hue proportional to estimated probability of ‘Yes’/’1’ and white equal to the overall probability of each 
item (Table 1)
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and semivariogram ranges (~ 2.4–3.5  km) look nearly 
identical across all eight directional semivariograms 
of the “Building conditions ≥ Moderate” item (Addi-
tional file 1: Fig. S2c.1)) and are similar to the estimated 
sill (0.56) and range (1st = 0.513 km, 2nd = 2.470 km) of 
the omnidirectional semivariogram reported in Table  2. 
However, certain directional semivariances decrease 
as distance increases beyond these ranges (directional 
semivariograms of angles  0°/180°, 22.5°/202.5°,  45°/225°, 
67.5°/247.5°), while others exhibit cyclical variability 
beyond these ranges  (90°/270°, 112.5°/292.5°,  135°/315°), 
and one is flat beyond the range (157.5°/337.5°).

Table 3 displays the predictive accuracy of large spa-
tial scale, small spatial scale, and rater components, as 
symbolized in the above equation. Regardless of rater 
adjustment, additional modeling of small-scale spatial 
relationships via Kriging results in a markedly higher 

ROC AUC of observed audit item responses for all 
audit items compared to modeling only large-scale rela-
tionships. When considering all 62 full models (e.g., 
large-scale + small-scale spatial modeling with or with-
out rater adjustment), 29 models—12 neighborhood 
physical disorder, 9 intersection-related, 8 sidewalk-
related—had ‘outstanding’ predictive accuracies (ROC 
AUC ≥ 0.9), indicating that 90% of observed responses 
for these audit items of the validation dataset could 
be classified as ‘Yes’/’1’ or ‘No’/’2’ based on predic-
tions from the training dataset. Only 1 model—high-
way is a barrier including rater adjustment—resulted 
in a less than ‘Acceptable’ predictive accuracy (ROC 
AUC = 0.583).

A majority of audit items’ (18/31) predictive accuracy 
improved with additional adjustment for rater within the 
system of equations. There was variation in predictive 

y Pedestrian Crossing Marks z Type of Pedestrian Crosswalk Marks

aa Traffic Signal Type ab One-way Street

ac Number of Lanes ad Presence of Highway

Highway is Barrierae

Fig. 3 continued
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Table 3 Prediction ability of neighborhood audit item responses by spatial scale (large/small) and rater adjustment

Audit item Detrending ROC AUC prediction*

Large-scale/
Rater

+ Small-scale 
Kriging

%Change of rater 
adjustment, full equation

%Change large- 
vs small-scale

Garbage 3rd order spatial 0.755 0.856 13.4

3rd order spatial + rater 0.874 0.919 7.36 5.1

Abandoned cars 3rd order spatial 0.881 0.996 13.1

3rd order spatial + rater 0.952 0.994 − 0.2 4.4

Building conditions ≥ moderate 3rd order spatial 0.852 0.902 5.9

3rd order spatial + rater 0.880 0.916 1.55 4.1

Yard conditions ≥ moderate 3rd order spatial 0.897 0.934 4.1

3rd order spatial + rater 0.921 0.946 1.28 2.7

Dumpster 3rd order spatial 0.714 0.842 17.9

3rd order spatial + rater 0.714 0.849 0.83 18.9

Graffiti 3rd order spatial 0.871 0.914 4.9

3rd order spatial + rater 0.887 0.923 0.98 4.1

Boarded/burned building 3rd order spatial 0.851 0.914 7.4

3rd order spatial + rater 0.850 0.915 0.11 7.6

Outdoor seating 3rd order spatial 0.562 0.735 30.8

3rd order spatial + rater 0.679 0.767 4.35 13

Team sports 3rd order spatial 0.591 0.915 54.8

3rd order spatial + rater 0.683 0.894 − 2.3 30.9

Yard decorations 3rd order spatial 0.667 0.825 23.7

3rd order spatial + rater 0.708 0.852 3.27 20.3

Fences 3rd order spatial 0.710 0.884 24.5

3rd order spatial + rater 0.736 0.897 1.47 21.9

Sidewalk present 3rd order spatial 0.814 0.950 16.7

3rd order spatial + rater 0.814 0.943 − 0.74 15.8

Complete sidewalk 3rd order spatial 0.683 0.842 23.3

3rd order spatial + rater 0.726 0.855 1.54 17.8

Sidewalk condition 3rd order spatial 0.662 0.771 16.5

3rd order spatial + rater 0.697 0.775 0.52 11.2

Sidewalk width 3rd order spatial 0.830 0.897 8.1

3rd order spatial + rater 0.831 0.901 0.45 8.4

Sidewalk from curb distance 3rd order spatial 0.586 0.978 66.9

3rd order spatial + rater 0.724 0.914 − 6.54 26.2

Car obstruction 3rd order spatial 0.626 0.879 40.4

3rd order spatial + rater 0.663 0.881 0.23 32.9

Garbage can obstruction 3rd order spatial 0.674 0.929 37.8

3rd order spatial + rater 0.695 0.917 − 1.29 31.9

Pole or sign obstruction 3rd order spatial 0.592 0.900 52

3rd order spatial + rater 0.726 0.876 − 2.67 20.7

Other obstruction 3rd order spatial 0.689 0.870 26.3

3rd order spatial + rater 0.694 0.871 0.11 25.5

Curb cuts 3rd order spatial 0.559 0.710 27

3rd order spatial + rater 0.669 0.716 0.85 7

Clear intersection 3rd order spatial 0.681 0.851 25

3rd order spatial + rater 0.684 0.852 0.12 24.6

Pedestrian crossing sign 3rd order spatial 0.669 0.827 23.6

3rd order spatial + rater 0.664 0.809 − 2.18 21.8
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Table 3 (continued)

Audit item Detrending ROC AUC prediction*

Large-scale/
Rater

+ Small-scale 
Kriging

%Change of rater 
adjustment, full equation

%Change large- 
vs small-scale

Pedestrian signal 3rd order spatial 0.651 0.908 39.5

3rd order spatial + rater 0.679 0.897 − 1.21 32.1

Pedestrian crossing marks 3rd order spatial 0.731 0.871 19.2

3rd order spatial + rater 0.725 0.860 − 1.26 18.6

Type of pedestrian crosswalk marks 3rd order spatial 0.697 0.931 33.6

3rd order spatial + rater 0.709 0.934 0.32 31.7

traffic signal type 3rd order spatial 0.661 0.841 27.2

3rd order spatial + rater 0.699 0.838 − 0.36 19.9

One-way street 3rd order spatial 0.789 0.931 18

3rd order spatial + rater 0.793 0.923 − 0.86 16.4

Number of lanes 3rd order spatial 0.676 0.920 36.1

3rd order spatial + rater 0.674 0.948 3.04 40.7

Presence of highway 3rd order spatial 0.838 0.993 18.5

3rd order spatial + rater 0.838 0.993 0 18.5

Highway is barrier 3rd order spatial 0.563 0.833 48

3rd order spatial + rater 0.479 0.583 − 30.01 21.7

*The area under the curve (AUC) of receiver operator curves (ROC) resulting from each item-specific logistic regression of the validation dataset was calculated where 
observed audit item response was the dependent variable and predicted response probability was the single independent variable measured as a continuous variable

Fig. 4 Correlation matrix of block group-level, predicted audit item responses and sociodemographic, economic, and housing  characteristics1,2. 1 
From the 2011–2015 American Community Survey. 2 Pearson correlations greater than |0.8| noted with an asterisk
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accuracy improvement by audit item grouping with 9 of 
11 neighborhood physical disorder audit items, 6 of 10 
sidewalk-related, and 3 of 10 intersection-related audit 
items indicating improved prediction accuracy with rater 
adjustment. Percent improvement in ROC AUC with 
adjustment for rater ranges from a low of − 30.01% (High-
way is Barrier, worsening prediction) to 7.36% (Garbage, 
improved prediction). When considering the worse pre-
dictive ability of “Highway is Barrier” as an outlier (next 
worse is− 6.54%), the overall average % improvement in 
ROC AUC with rater adjustment is 0.34%—neighbor-
hood physical disorder-related item average = 1.7%, side-
walk-related item average = − 0.3%, intersection-related 
item average = − 0.6%. All 62 models that accounted for 
small-scale spatial variation resulted in improved spatial 
prediction accuracy. The largest improvements associ-
ated with small-scale spatial modeling were among side-
walk- and intersection-related items, indicating greater 
small-scale spatial variation in response patterns of these 
audit items.

Block group-level, pair-wise correlations between 
predicted audit item responses and sociodemographic, 
economic, and housing characteristics vary substan-
tially in magnitude from near perfect correlation 
(r = 0.99 building conditions-yard conditions) to near 
zero (r = 0.03 outdoor seating-abandoned cars) (Fig.  4, 
Additional file  1: Table  S1). Nine of the ten largest cor-
relations (all r ≥ |0.83|) involve combinations of five 
neighborhood physical disorder audit items—garbage, 
building conditions ≥ moderate, yard conditions ≥ mod-
erate, graffiti, dumpsters—indicating their interdepend-
ence. The ten largest correlations involving census data 
(|0.64| ≤ r ≤ |0.84|) include one of the three racial-ethnic 
composition variables with the five highest between pres-
ence of garbage and percentage non-Hispanic White 
(r = − 0.83), percentage non-Hispanic AA and percent-
age non-Hispanic White (r = − 0.81), sidewalk con-
ditions ≥ good and percentage non-Hispanic White 
(r = 0.77), sidewalk conditions ≥ good and percentage 
non-Hispanic AA (r = − 0.71), and curb cuts and per-
centage non-Hispanic White (r = − 0.68). The three larg-
est correlations involving median owner occupied home 
value involved the same variables—percentage non-His-
panic White (r = 0.65), garbage (r = − 0.64), and side-
walk curb cuts (r = − 0.62)—as the largest correlations 
involving median gross rent (percentage non-Hispanic 
White r = 0.56, garbage r = − 0.56, and sidewalk curb 
cuts r = − 0.51). The five highest correlations involving 
percentage of residents who moved within the previous 
year (|0.32| ≤ r ≤ |0.37|) were with garbage, building con-
ditions ≥ were with building conditions ≥ moderate, yard 
conditions ≥ moderate, graffiti, dumpsters, and aban-
doned cars. The strongest correlates of the percentage 

of working-age people who walk to work also included 
dumpsters (r = 0.48), graffiti (r = 0.47), building condi-
tions ≥ moderate (r = − 0.45), yard conditions ≥ moderate 
(r = − 0.44) along with sidewalk width ≥ 4 feet (r = 0.41).

Discussion
The spatial properties (i.e., spatial trend, autocorrela-
tion, predictive accuracy) of 32 built environment char-
acteristics assessed via point-based virtual neighborhood 
audits vary by audit item, but nearly all spatial models 
predict audit responses with ‘outstanding’ accuracy. 
Sidewalk and intersection audit item responses tend to 
exhibit small-scale variability which indicate the need 
for samples that are more spatially dense compared to 
neighborhood physical disorder audit items. Correla-
tions between predicted audit item response patterns 
and neighborhood factors indicate that block-group level 
neighborhood physical disorder-related items are most 
inter-dependent with one another as well as select soci-
odemographic, economic, and housing characteristics.

Comparison with previous literature
To the best of our knowledge, our work is the first to 
report extensively on spatial autocorrelation and spatial 
prediction on a diverse set of audit items over a large 
spatial scale. With a few notable exceptions [25, 27–30, 
62–64], neighborhood audit studies, virtual or in-per-
son, have not reported spatial properties of audited fea-
tures [25, 27–30, 62–64]. Those studies reporting any 
spatial properties have mainly focused on investigations 
of spatial autocorrelation [25, 27–30, 62, 63], with only 
one known study investigating spatial prediction of four 
neighborhood disorder audit items (reporting no predic-
tive performance metrics) [64], and no known studies 
reporting spatial trend properties. Studies reporting spa-
tial autocorrelation have tested a mix of individual audit 
items [28–30, 62], and neighborhood physical disorder 
scores from data reduction techniques that yield single 
values per audit location from combinations of audit 
item responses [25, 27]. Spatial autocorrelation ranges of 
neighborhood physical disorder scale scores from previ-
ous studies of four major U.S. metropolitan areas varied 
from 1 km to 10 km [25, 27]. These ranges from neighbor-
hood physical disorder scores were typically larger than 
ranges of individual audit items of neighborhood physi-
cal disorder—presence of buildings in disrepair (0.72 km) 
[28], presence of parcel-level gardens (range ≈ 0.61  km) 
[29], block group-level garden density (range ≈ 0.40 km) 
[30]—observed in other studies. Two additional studies 
tested the spatial autocorrelation of neighborhood physi-
cal disorder scores [63], and sidewalk completeness and 
width [62], but did not report the distances at which val-
ues spatially correlated.
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Viability of point-based auditing
Although comparisons to the few previous studies inves-
tigating spatial properties of audit responses are dif-
ficult, this study confirms and extends previous results 
in various ways. All 31 audit item response patterns 
demonstrated the presence of spatial autocorrelation, 
confirming previous studies of similar audit items or 
constructs. This study extends previous results in finding 
appreciable spatial autocorrelation based on 3rd order 
spatially-detrended audit item response patterns; esti-
mated Kriging parameters (i.e., nugget, partial sill, range) 
are from audit item response patterns that are independ-
ent of larger-scale trends across the study area. The non-
zero Kriging range parameters for all audit items parallels 
the improved spatial prediction accuracy of models that 
additionally adjust for small-scale spatial variation; small-
scale spatial autocorrelation exists in these audit items. 
Also, of note was the pattern of best-fit, nested theoreti-
cal semivariograms (opposed to single semivariograms), 
suggesting that small-scale spatial variation operated at 
least two scales. Together, these results indicate that the 
spatial variability of audit item response patterns spa-
tially autocorrelate across multiple scales, suggestive of 
multiple processes influencing these patterns. Factors 
that explain multi-scale spatial variation of audit item 
responses are likely specific to individual audit items or 
audit item construct grouping (e.g., all sidewalk-related 
items caused by common social processes). For exam-
ple, the spatial correlation of yard conditions across a 
region might operate at multiple scales due to variation 
in individual and institutional economic resources or 
strongly related factors (e.g., disposable income for yard 
care equipment, number of foreclosed/real estate owned/
abandoned homes, municipal resources to care for pub-
lic land, public/private disinvestment) and landscaping 
services (i.e., existence of such, affordability, universal 
servicer vs. multiple servicers coming on different days 
within the same street) might operate at a larger scale, 
whereas typical yard care practices of individuals and 
institutions occupying those regions or social network 
diffusion effects where presence of a well-kept yard influ-
ences neighbors to improve their yard (i.e., “landscape 
mimicry” [29, 30]) might operate more locally.

As indicated in the results, the semivariograms best fit 
through nesting appear to be related to instances of a few 
binned empirical semivariogram values with markedly 
lower variance (i.e., higher correlation) at short distances. 
One the one hand it can be argued that the high correla-
tion of audit item responses at short distances might be 
expected and reflective of social processes such as those 
detailed above for yard conditions. On the other, more 
statistically problematic hand, these highly correlated 
observations at short distances could be indicative of 

raters’ characterizations of nearly-identical GSV scenes; 
akin to a Kriging analysis with duplicated observations 
which invalidates the results [65]. However, no two exact 
audit locations were rated more than once and less than 
0.02% of semivariogram data points comprise the first 
two binned values of each audit item experimental semi-
variogram translating to very small contributions to the 
weighted least squares regression and fitted theoreti-
cal semivariogram. Pragmatically, it would very difficult 
to generate a sample of audit location points proximate 
enough to adequately test small-scale spatial variation 
while also ensuring that raters are not rating portions of 
the same scene more than once.

Spatial model predictive accuracy
That approximately half of full spatial models, regard-
less of rater adjustment, had at least 90% predictive 
accuracy—and 90% of models had at least 80% accuracy 
—suggests that this sample of point-based audit item 
responses were predicted well. Echoing the above dis-
cussion on audit item response multiscale spatial varia-
tion, additional modeling of small-scale spatial variation 
resulted in marked improvement in prediction accuracy 
for all items compared to large-scale spatial prediction 
alone, indicating the utility of regression Kriging for spa-
tial prediction [44, 65]. A main objective of this study was 
the exploration of spatial prediction performance varia-
tion due to systematic differences in rater test–retest and 
inter-rater agreement [32]. While a slim majority (18 of 
31) of full spatial model’s predictive accuracy improved 
with rater adjustment, patterns of prediction improve-
ment might exist which could aid in guiding future 
analyses and decisions of whether to adjust for rater. For 
example, an overwhelming majority of neighborhood 
physical disorder-related, but minority of intersection-
related, audit item responses saw improved prediction 
accuracy with statistical adjustment for rater. Compar-
ing these spatial predictive accuracy patterns to previous 
reported patterns of rater agreement reliability seems to 
suggest that lower reliability items (neighborhood physi-
cal disorder-related) experience greater improvement 
in prediction accuracy compared to higher reliability 
items (intersection-related) when variation in rater is 
accounted for in statistical models [32]. Measurement 
theory conventionally partitions observed variation into 
a component attributable to true variation, a component 
attributable to systematic observer error and a com-
ponent attributable to random error. It follows that, for 
lower reliability items (i.e. items in which more observed 
variation is attributable to error), there is more room for 
spatial improvement by adjusting for rater effects. Future 
validity studies of these audit items should test whether 
item or construct validity varies with rather adjustment 
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in greater detail. Such validation studies will be helpful in 
deciding whether adjusting for rater is beneficial.

Predicted audit item response correlations
This study’s findings of moderate-strong correlations 
among neighborhood physical disorder audit items and 
weak-moderate correlations between neighborhood 
physical disorder items and demographic, economic, and 
housing characteristics corroborate previous research 
[3, 25, 27, 28, 63]. Neighborhood physical disorder 
scores have been consistently built from visually audited 
assessments of items similar to those measured in this 
study: garbage/litter, empty liquor bottles, cigarettes in 
the street, graffiti, defaced property, abandoned cars, 
building conditions, deteriorated recreational spaces, 
boarded/burned buildings, vacant land, barred windows 
[3, 25, 27, 63]. These studies have also found greater 
physical disorder to negatively correlate with area-level 
home or property value [25, 63], and positively correlate 
with individual-level AA race [28] and population density 
[27].

Although only correlational and not indicative of causal 
processes, relationships involving the three racial-ethnic 
density variables offer suggestions of areas for additional 
inquiry. New Jersey, and Essex County in particular, con-
tains regions with some of the highest racial-ethnic resi-
dential segregation in the U.S. [66, 67]. High correlations 
suggested that block groups with higher percentages 
of NHW residents have less garbage, more sidewalks in 
good condition, and fewer curb cuts. The latter correla-
tion might be more indicative of NHW residents’ ten-
dency to live away from urban areas characterized by 
more intersections between roads and sidewalks, and 
hence curb cuts.

Other results of the correlation analysis deserving fur-
ther attention, especially in future research involving 
physical disorder, is the moderate relationships between 
percentage of residents moving within the previous year 
and presence of garbage (r = 0.37), presence of graffiti 
(r = 0.37), building conditions ≥ moderate (r = − 0.36), 
yard conditions ≥ moderate (r = − 0.36), and presence 
of dumpsters (r = 0.32). These relationships suggest that 
block groups serving as destinations to greater propor-
tions of recent residential movers are more likely to have 
higher physical disorder compared to areas with fewer 
residential movers. If holding under more rigorous analy-
ses such results could inform research on neighborhood 
instability [68, 69], as well as underscore the importance 
of incorporating residential histories into studies involv-
ing built environment factors such as these [70–73].

Limitations of this study include the ad hoc regression 
Kriging method and uncertainty surrounding GSV as a 
reliable data source. Regression Kriging has been shown 

to generate estimates of the mean structure of a spatial 
process—large scale + small scale estimates – that are 
as accurate as Universal Kriging [44, 55]. However, most 
instances of regression Kriging involve linear, as opposed 
to logistic, regression of large-scale and covariate fac-
tors. No statistical methods exist within frequentist set-
tings for Universal Kriging of binary data. Limitations of 
GSV data for assessment of built environment factors—
unknown protocols for GSV driver routes, image acqui-
sition, image processing, image updates; spatio-temporal 
patterns of image availability; suitability of environmen-
tal assessment of small or temporally variable items (e.g., 
garbage variation by day/time of day)—have been exten-
sively detailed elsewhere [21, 22, 32, 74]. Of special rel-
evance to this spatial analysis is the temporal variability 
of GSV scenes. An assumption of the spatial autocor-
relation analyses is that temporal and spatial variability 
are independent of one another, which at least one pre-
vious study of spatio-temporal patterns of GSV image 
availability has brought into question [22]. For example, 
there is evidence that the GSV cars collect images in 
spatio-temporal batches based on whichever region the 
cars traverse [75], leading to spatially autocorrelated GSV 
image dates [22]. The influence of this relationship might 
could be mitigated if the spatio-temporal dependency is 
smooth across the study area. For example, GSV image 
batches that are collected and uploaded based on munici-
pality adjacency, which would make economic sense 
from a transportation optimization perspective, would 
result in smooth changes in spatio-temporal patterns 
of GSV images. Regardless, these potential dependen-
cies point to investigation of spatio-temporal prediction 
models of neighborhood audit responses [76], which 
coincide with the need mentioned above to investigate 
residential histories of individuals to whom GSV data will 
be linked in future studies. Finally, the audit items con-
sidered in this study were chosen based on their ability 
to be reliably observed and recorded through a stand-
ardized protocol, differentiating them from studies that 
prompt raters to provide their overall perception of a vir-
tual scene’s beauty, safety, or liveliness [74, 77]. Choosing 
between assessing a virtual scene for identifiable visual 
components versus a scene’s perceived overall charac-
teristics should not be based on whether one approach 
is generally superior to another, but rather the ultimate 
study question and planned translation of study find-
ings. Identifying individually observable components of 
a virtual streetscape could motivate further studies and 
place-based interventions aimed at modifying the built 
environment as ways to improve population health [5].
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Conclusion
Specific built environment- and physical disorder-related 
patterns assessed using a new point-based virtual neigh-
borhood audit method spatially autocorrelate across 
multiple spatial scales, both short and longer distances, 
indicating the potential benefit of point-based over tra-
ditional, segment-based assessment methods. An over-
whelming majority of audit item spatial patterns were 
well-predicted by regression Kriging spatial models, 
albeit with mixed results for whether statistical adjust-
ment for rater response variability improves audit item 
spatial prediction. Predicted audit item responses related 
to physical disorder—garbage, graffiti, building condi-
tions, yard conditions, boarded/abandoned buildings, 
and dumpsters,—were strongly related to one another as 
well as distributions of racial-ethnic composition, socio-
economic indicators, and residential mobility. Among 
these specific items, drop-and-spin virtual neighbor-
hood auditing is a viable alternative to segment-based 
methodologies.
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