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METHODOLOGY

Distance sampling for epidemiology: 
an interactive tool for estimating 
under-reporting of cases from clinic data
Luca Nelli1*, Moussa Guelbeogo2, Heather M. Ferguson1, Daouda Ouattara2, Alfred Tiono2, Sagnon N’Fale2 
and Jason Matthiopoulos1

Abstract 

Background: Distance sampling methods are widely used in ecology to estimate and map the abundance of animal 
and plant populations from spatial survey data. The key underlying concept in distance sampling is the detection 
function, the probability of detecting the occurrence of an event as a function of its distance from the observer, as 
well as other covariates that may influence detection. In epidemiology, the burden and distribution of infectious dis-
ease is often inferred from cases that are reported at clinics and hospitals. In areas with few public health facilities and 
low accessibility, the probability of detecting a case is also a function of the distance between an infected person and 
the “observer” (e.g. a health centre). While the problem of distance-related under-reporting is acknowledged in public 
health; there are few quantitative methods for assessing and correcting for this bias when mapping disease incidence. 
Here, we develop a modified version of distance sampling for prediction of infectious disease incidence by relaxing 
some of the framework’s fundamental assumptions. We illustrate the utility of this approach using as our example 
malaria distribution in rural Burkina Faso, where there is a large population at risk but relatively low accessibility of 
health facilities.

Results: The modified distance-sampling framework was used to predict the probability of reporting malaria infec-
tion at 8 rural clinics, based on road-travel distances from villages. The rate at which reporting probability dropped 
with distance varied between clinics, depending on road and clinic positions. The probability of case detection was 
estimated as 0.3–1 in the immediate vicinity of the clinic, dropping to 0.1–0.6 at a travel distance of 10 km, and effec-
tively zero at distances > 30–40 km.

Conclusions: To enhance the method’s strategic impact, we provide an interactive mapping tool (as a self-contained 
R Shiny app) that can be used by non-specialists to interrogate model outputs and visualize how the overall prob-
ability of under-reporting and the catchment area of each clinic is influenced by changing the number and spatial 
allocation of health centres.
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Background
Estimates of infectious disease incidence at local, 
regional and national scales are typically based on clini-
cal records of symptomatic cases as reported to the pub-
lic health system (e.g. from clinics or hospitals). It has 
long been recognized that estimates of disease burden 
acquired from such passive surveillance will be biased by 
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under-reporting [1–6]. Such problems of under-report-
ing are heightened in settings where there are significant 
barriers to health system access [7–10], for example due 
to an unbalanced geographical distribution of clinics 
[11], difficult travel routes [12, 13] or socio-economic 
barriers to health-seeking [10, 14]. Consequently under-
reporting is particularly likely in rural areas in low- and 
middle-income countries where all of these variables may 
combine to limit access to health services [1, 2, 9, 15–17]. 
In such settings, disease burden is optimally estimated 
through community-based surveys [18], or active surveil-
lance [5]. Although more accurate, active surveillance 
programmes are considerably more expensive and time 
consuming than passive surveillance through the health 
system, and are thus usually only possible for a few time 
points at a limited number of locations.

Consequently, burden estimates in low and middle 
incomes countries are typically derived from passive sur-
veillance for some of the most important infectious dis-
eases, including malaria [18–20] and dengue [6, 21]. An 
advantage of this system is that it incorporates data from 
a large number of geographically dispersed clinics, and 
thus offers opportunity for large-scale spatial predictions. 
However, although this system may reliably reflect the 
epidemiological trends, the remarkable levels of under-
reporting arising from self-reporting at health centres [6, 
18] can limit the accuracy of spatial predictions. These 
biases arising from spatial variation in under-reporting 
are rarely formally quantified. When estimating the ‘true’ 
disease incidence in a community, a multiplication factor 
can be used to adjust values to account for under-report-
ing [5, 20]. Factors known to influence reporting include 
the severity of disease symptoms (e.g. probability of 
asymptomatic infection [22–26]) and sociodemographic 
factors that encourage or impede self-reporting, such as 
poverty and education [8, 10, 16, 27, 28], ethnicity [29, 
30] and language barriers [31]. However, the estima-
tion of reporting completeness at national level can suf-
fer from systematic biases [20]. For example, utilization 
of health services in the population is not homogeneous 
[32]. Formal quantification of the probability of under-
reporting can be expressed as a function of the effective 
distance between the patient’s residence and the nearest 
health facility [12, 13, 32–40].

Spatial mapping of disease incidence requires thus 
robust quantification not only of the factors that influ-
ence epidemiological risk, but also of those affecting 
under-reporting [3, 41–43]. Measurement and assess-
ment of the full range of environmental, socio-economic 
and geographic variables that can impact health-seeking 
behaviour is difficult to achieve at a population-level. 
However, one piece of crucial information that is regu-
larly recorded at health facilities is patient residence 

(either specific address, or community of residence). 
This information can be used to calculate travel distance 
between a case and the health clinic, thus providing an 
opportunity to quantify one of the major causes of under-
reporting: distance. Methods to infer detection prob-
ability based on the distance between an object and an 
observer have been formally developed in the distance 
sampling framework, a well-established methodology 
used primarily in wildlife ecology to estimate density or 
abundance of animal or plant populations [44]. The list 
of practical applications of this method is constantly 
growing, and encompasses a wide variety of taxa (e.g. 
http://dista ncesa mplin g.org). Detailed derivation of these 
methods can be found in ST Buckland [44], ST Buckland, 
DR Anderson, KP Burnham, JL Laake, DL Borchers and L 
Thomas [45] and ST Buckland, EA Rexstad, TA Marques 
and C Oedekoven [46]. However, so far this method has 
not been applied to predict infectious disease incidence 
in humans based on reporting to health systems.

Here, we adapt the conventional distance sampling 
approach to the estimation of under-reporting of disease, 
using the example of malaria incidence in a rural setting 
in Burkina Faso where access to health clinics is limited 
due to poor road infrastructure, poverty, and seasonal 
weather events [47–49]. Within this context, we define 
the clinics where people report as the “observers”, with 
the event we are trying to detect being malaria infection. 
Thus, we focus on the subset of distance sampling meth-
ods that deal with stationary observers (performing so-
called, point-transect distance sampling).

In their simplest form, point-transect survey methods 
assume that all occurrences within a predetermined dis-
tance w from the observer’s position are detected. It is 
then possible to use these local counts to quantify corre-
lations with geographical covariates, or simply scale them 
up to estimate the total number of occurrences across the 
landscape [44]. Distance sampling relaxes the assumption 
of perfect detectability by introducing the probability 
that an object within the surveyed area a is detected. This 
probability may decay with distance d from the observer, 
a property described by the detection function P(d) . The 
detection function can be further improved by the inclu-
sion of covariates other than distance, and is estimated 
from the observations subject to three key assump-
tions. First, the zero-distance assumption dictates that 
P(0) = 1 (i.e. the observer cannot miss an occurrence at 
their exact position). Second, the independence assump-
tion dictates that observers are independent of each 
other and, in particular, that any given occurrence may be 
recorded by more than one observer. Third, the Euclidean 
distance assumption postulates that detection varies as a 
function of straight-line distance on a Cartesian system 
of coordinates.

http://distancesampling.org
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Extending the application of the point-transect dis-
tance sampling method to clinic data requires us to relax 
its three key assumptions, by acknowledging that cases 
may go undetected even at zero distance (e.g. asympto-
matic cases), that after reporting at one clinic a patient, 
will not report elsewhere (non-independence of observ-
ers), and that detection may vary as a function of non-
Euclidean distance measures, related to road-network or 
other determinants of accessibility.

Here, we begin the process of adapting distance sam-
pling methods for epidemiological prediction by pre-
senting the fundamental concepts for estimation of a 
detection function for clinic data, implementing them 
within a Bayesian framework of statistical inference and 
illustrating their use through a case study of malaria 
reporting in rural south-western Burkina Faso. This 
area of Africa experiences a particularly high burden of 
malaria [50, 51], creating an urgent need for accurate 
prediction of incidence. Finally, to illustrate how our 
approach could be used for public health planning, we 
present an interactive mapping tool (R Shiny app), built 
upon the model results from the malaria case-study. This 
can be used by non-specialists to interrogate model out-
puts and visualize how the overall probability of under-
reporting and the individual clinic catchment area is 
influenced by changing the spatial distribution of health 
centres.

Methods
Statistical analyses
For a given geographical area of interest, out of N  actual 
clinics we consider a subset of J  participating clinics. 
We consider a dataset comprising of a list of patients 
i ∈ {1, . . . I} , each reporting at one of the J  participating 
clinics. We develop inference for the subset of cases that 
are reported to participating clinics because, by defini-
tion, all other reported cases will not be found in the data 
set. For each ith patient reporting at any one of J  partici-
pating clinics, we define a data vector of “clinic report-
ing choice” hi = {hi,1, . . . , hi,J } of length J  , with value 1 
at the jth clinic, where the case was reported, and 0 in 
all the other cases. Such data can be described as realisa-
tions from a single-trial multinomial process,

where the likelihood of a positive outcome (disease case 
being reported) at the jth clinic is determined by the vec-
tor of probabilities   Pi =

{

Pi,1, . . . ,Pi,J
}

 of reporting the 
ith case at the ith clinic.

Any given case may be reported to any one of the par-
ticipating clinics, but nearby clinics are more likely to 
receive the report. Under these assumptions, the prob-
ability of any one case being reported to any one clinic 

(1)hi ∼ Multinomial(1,Pi)

(accounting for other clinics) can be modelled in terms 
of the distances of all the clinics from the point of occur-
rence of the case, as follows:

where gi,(1,...,J−1) represents the decay in the probability 
of reporting a disease case and is expressed as a function 
of distance g

(

di,j
)

 between the place of residence of the 
ith patient and the location of the jth clinic. In traditional 
distance sampling approaches, the detection probability 
may be formulated as a half-normal (HN), a hazard rate 
(HR) or a negative exponential (NE) model:

where α and β are shape parameters, describing the rate 
of decay in detection probability with increasing dis-
tance. These three models are generally good options 
for traditional distance sampling, however they are not 
all appropriate for the proposed multinomial process 
because, following normalisation of probabilities to 1, a 
case reported at the exact location of a particular clinic 
could not receive a probability of 1. For this reason, we 
introduce a generalised formulation of these standard 
models:

This function collects the main features of the func-
tions in Eq. (3), such as the exponential behaviour of 
HN and NE and the exponent for the decay rate in HR. 
However, we add the estimation of an intercept a0 which 
is extracted from data on the behaviour of the detection 
function at zero distance and allows the function to work 
under the normalisation proposed (the multinomial pro-
cess of Eq. (2)), therefore allowing relaxation of the inde-
pendence-of-observations assumption.

Pi,1 =
gi,1

1+
∑J−1

j=1 gi,j

Pi,2 =
gi,2

1+
∑J−1

j=1 gi,j
...

(2)Pi,(J−1) =
gi,(J−1)

1+
∑J−1

j=1 gi,j

(3)

HN : g(d) = exp

(

−d2

2σ 2

)

.

HR : g(d) = 1− exp

[

−

(

d

σ

)−β
]

.

NE : g(d) = exp

(

−d

σ

)

(4)g(d) = exp
(

a0 + a1d
c
)
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Health care accessibility needs to take into account 
both spatial and non-spatial factors, such as demograph-
ics or socioeconomic status [7, 8, 16, 52–55] that influ-
ence health seeking behaviour. To demonstrate that this 
model can be extended to include other non-spatial pre-
dictors of disease reporting, we tested two other models 
that included biologically realistic correlates of disease 
reporting: age of the patient (A), sex (S):

Poor road conditions can increase travel time and 
reduce health-seeking behaviour. This is particularly 
true in rural Africa, where road conditions are strongly 
weather dependent. To account for that, we tested 
another model that included season (R) as a categorical 
variable (wet or dry season).

Malaria case study
Study area and data collection
The distance sampling model described above was 
applied to a case study of malaria incidence quantifica-
tion in rural Burkina Faso. Burkina Faso has one of the 
high rates of malaria in Africa [50, 51], with the bulk of 
transmission occurring in rural areas during or shortly 
after the rainy season between July to December. The 
primary level of the national health system is constituted 
by a network of health centres (centre de santé et de pro-
motion sociale, CSPS). Each health centre covers several 
villages (approximately 1 centre for 10,000 habitants) and 
they represent the first-line of points of contact with the 
population, in terms of disease diagnosis and treatment. 
However, access to these clinics can be limited due to 
poor road infrastructure, poverty, and seasonal weather 
events [47–49].

We used data on malaria cases as reported at 8 clin-
ics in the Komoé district, in south-western Burkina 
Faso (Fig. 1) between January and December 2017. This 
is a rural area that consists primarily of West Sudanian 
savannah, made up of 234 discrete village communi-
ties with a total censused population of 428,019 in 2016 
(mean per village 1829 ± 1915 dev. std., Institut national 
de la statistique et de la démographie, unpublished 
data). Most of the road network comprises second-
ary and tertiary roads, with difficult access during the 
rainy season. This area comprises 64 clinics, that are the 
first point of contact for communities seeking malaria 
diagnosis and treatment. Clinics in our study are man-
aged by the same health authority, and therefore share a 

(5)g(d,A) = exp
(

a0 + a1d
c + a2A+ a3Ad

)

(6)g(d, S) = exp
(

a0 + a1d
c + a2S + a3Sd

)

(7)g(d,R) = exp
(

a0 + a1d
c + a2R+ a3Rd

)

common operational timetable, quality of infrastructure 
and equipment, diagnostic capabilities and availability 
of drugs. Clinical data at these facilities are recorded in 
a logbook implemented by the national health informa-
tion system (système national d’informations sanitaires, 
SNIS) and are monthly summarized and transmitted to 
the national level.

From the registers of each individual clinic, we obtained 
the permission (Ministry of Health National Centre of 
Research and Training on Malaria—Centre National De 
Recherche et Formation sur le Paludisme, CNRFP) to 
retrospectively extract the list of anonymized individual 
cases of patients (both adult and children) reporting from 
January to December 2017 a malaria episode, confirmed 
by rapid diagnostic test (RDT). For each individual case 
we extracted the following key data: consultation date, 
age, sex and reported village of origin. Anonymized data 
were recorded and securely stored in a sealed cupboard 
at CNRFP.

The full list of all the clinics (64) and villages (463) 
in the study area together with geographical coordi-
nates was obtained with permission from the Burkina 
Faso National Institute of Statistics and Demography 
(National Institute of statistics and demographic, unpub-
lished data). To calculate the pairwise distances between 
each patients’ village of origin and all the clinics in the 
study area, we used the package igraph [56] within the 
statistical software R [57]. We considered distances based 
on the road network, obtained from Open Street Map 
(www.opens treet map.org) in a shapefile format. However, 
only major roads were available for our study area, so we 
digitized minor roads using QGIS [58] and digital images 
from Google maps (www.googl e.com/maps) (Fig. 1).

Data analysis
We fitted the model (1) to the malaria case data using 
the four different approaches given by Eqs.  (4–7), using 
Bayesian methods [59, 60] with the program JAGS [61], 
interfaced with R via the package rjags [62]. We used 
Markov Chain Monte Carlo (MCMC) algorithms (code 
provided in Appendix S1) to fit each of the three models 
to the distribution of road distance data (and age, sex and 
season, in case of Eqs.  (5–7). We chose relatively non-
informative priors for all parameters. For the coefficients 
a0 , a1, a2 , a3, a4 and a5 we chose diffuse normal priors 
centred at zero, corresponding to a null hypothesis of no-
effect for each covariate. For the distance decay parame-
ter c , we adopted a uniform prior with limits 0–1000 [63].

To achieve convergence, models were run for  105 
iterations. Means of posterior distributions with cor-
responding 95% credible intervals were obtained for all 
the parameters. We compared the four models using the 
deviance information criterion (DIC) [64]. Each model 

http://www.openstreetmap.org
http://www.google.com/maps
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was also evaluated using a confusion matrix to compare 
the classification results (each case being assigned to one 
of the clinic, as predicted by the model) with the refer-
ence values (the true classification of each reported case, 
as observed from the data), calculating in particular the 
overall accuracy and the Kappa statistic of each model 
[65].

Spatial mapping of reporting probability
Our best model was used to create a map of overall 
reporting probability as follows. First we created a square 
grid with 1 × 1 km resolution, then calculated the road-
based distance between the centroid of each cell and 

all N  health centres in the study area (64). If the cen-
troid was not on the road network, we created a further 
segment connecting it to the nearest stretch of road. 
Here, we are also taking into account the probability 
Pi,q that the case goes completely unreported. For each 
cell of the grid we calculated the vector of probabilities 
Pi =

{

Pi,1, . . . ,Pi,N ,Pi,q
}

 of reporting at each of the N  
clinics, according to: Eqs. (2) and (4). For such prediction, 
the formula used in Eq. (2) mirrors the one used for the 
model, however here we included the probability Pi,q that 
the case goes l unreported, made in Eq. (2) assuming the 
form:

Fig. 1 Distribution of health centres (red crosses), villages (black dots) and road network (grey lines) in Komoé district (solid line) within Burkina 
Faso (insets)
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Conversely, we calculated the overall reporting prob-
ability in each cell RPi as.

and used this to produce a continuous surface of report-
ing probability (see Results and Fig.  4a). This map can 
be interpreted as a proxy for health care accessibility, 
as defined by product of different underlying processes 
(human behaviour, road network, and physical location 
of clinics). From this continuous surface we defined the 
catchment area of each clinic by assigning each cell to the 
clinic with the maximum probability of reporting. This 
included the category “un-reported”, if the probability of 
not-reporting Pi,q was the relatively highest.

Interactive mapping
To illustrate how our model can be used to explore its 
output under different scenarios of health centre distri-
bution, we created a mapping tool that provides users 
with an interactive graphical user interface (GUI) using 
the packages leaflet [66] and shiny [67] in R. The GUI 
allows users to interrogate any point in space in terms of 
overall reporting probability, according to Eq. (9) and the 
catchment area to which it belongs. Moreover it allows 
the user to visualize the reporting probability of any 
clinic individually. Finally, we allow the user the option of 
selecting a subset of clinics to include or exclude from the 
model (i.e. can select from the N  clinics in Eq. (8)). In this 
way, the user can evaluate the contribution of each clinic 
in the public health network to case reporting and overall 
health centre accessibility, and highlight hotspots of un-
covered areas under different and custom scenarios (for 
example in the case of one or more clinics being closed).

Pi,1 =
gi,1

1+
∑N

n=1 gi,n

Pi,2 =
gi,2

1+
∑N

n=1 gi,n
...

Pi,N =
gi,N

1+
∑N

n=1 gi,n

(8)Pi,q = 1−

N
∑

n=1

Pi,n

(9)RPi =

N
∑

n=1

Pi,n

Results
A total 59,822 individual cases of malaria reported at the 
8 focal clinics were collated. Within this unprocessed 
dataset, the village of residence reported by patients 
couldn’t be linked to available data on community names 
(National Institute of statistics and demographic, unpub-
lished data) in ~ 12% of occasions. As it was not pos-
sible to assign village-of-residence to these data, they 
were excluded from analysis. The final dataset thus con-
sisted of 52,291 malaria cases, reported from 124 villages 
between January and December 2017.

MCMC for all four models reached convergence. The 
posteriors indicated that the probability of reporting a 
malaria case to a given health centre decreases with dis-
tance (Table 1). All of the models achieved a high over-
all accuracy, with percentages of correct classifications 
ranging between 73.7% and 75.0%, and high values of 
Kappa statistics (Table  1, Fig.  2). A random classifica-
tion would correctly assign 12.5% of cases (1/8 clinics), 
this indicates that our model correctly classified 6 times 
more cases than a random classification. Among the four 
models, the best one, as shown by the lowest DIC value, 
considered only distance with no additional value from 
the covariates of patient sex or age or from the season. 
Furthermore, the posterior distribution of coefficients for 
age, sex and season, in models (5), (6) and (7) had cred-
ible intervals overlapping the 0 values, indicating lack of 
effect.

Once we applied Eqs. (4), (8) and (9) to each cell of the 
grid, we obtained the vector of probabilities of report-
ing to each of the 64 clinics in the study area. By plotting 
these probabilities against the distance from the clinic 
(Fig.  3), the probability of reporting a malaria case at a 
given health centre was estimated to be 1.0 for most of 
the cases when the patient lives at 0  km from a health 
centre. Nevertheless, for some clinics the probability 
was < 1.0 at zero distance, meaning that people living 
nearby a clinic may nevertheless report to another clinic 
that is sufficiently close. The rate at which the reporting 
probability drops with distance varies between clinics, 
taking values between 0.10 and 0.60 at 10 km, and 0.0 at 
distances higher than 30-40 km (Fig. 3).

Such values represent the probability that an individual 
malaria case would be reported at a single clinic, how-
ever, by combining the probabilities of reporting to all the 
clinics, and accounting for the probability of not report-
ing at all, we obtained the map of overall reporting prob-
ability and the map of catchment areas (Fig. 4).

The interactive tool of predictive mapping can be 
found at http://boydo rr.gla.ac.uk/lucan elli/dista nce_clini 
cs_lite/. Although the inclusion of age, sex and season 
did not seem to improve the model, in the online supple-
ments we present the results of the model including the 

http://boydorr.gla.ac.uk/lucanelli/distance_clinics_lite/
http://boydorr.gla.ac.uk/lucanelli/distance_clinics_lite/
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season covariate, to provide an example on how this (or 
other covariates, depending on the specific study system) 
can be readily implemented in the predictive tool. Here, 
we provide three examples that can be obtained from 
this interactive tool (Fig. 5), showing the overall report-
ing probability (Fig. 5a), the catchment areas (Fig. 5b) and 

the contribution of a single given clinic in overall health 
network to case reporting (Fig. 5c). In particular, we show 
how these might vary according to different scenarios of 
subsets of clinics. In scenario 1, we show the maps when 
all the clinics are considered, in scenario 2 we consid-
ered a 50% random subset of clinics and in scenario 3 we 
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Fig. 2 Confusion matrices for classification obtained with the multinomial models of reported malaria cases at 8 health centres (on x and y axes), 
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selected a random 25% of the entire set of clinics. These 
examples illustrate how the overall probability of report-
ing decreases as clinics decrease and the catchment area 

and the relative probability of reporting to an individual 
clinic will increase.
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Fig. 3 Predicted probability of reporting a malaria case to one of 64 clinics in Komoé district, Burkina Faso, as function of distance from village, 
based on actual reported cases. Each colour represents a health centre. Lines represent a smoothed conditional mean for each health centre
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Fig. 4 a Overall map of probability of reporting individual malaria cases and at health centres in Komoé district in Burkina Faso as predicted by the 
best distance sampling model and distribution of health centres (red crosses), villages (black dots) and road network (grey lines). b Catchment area 
of each health centre, defined by the model. Dark grey areas are cells in which the overall probability of not reporting is the relatively highest
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Discussion
Here, we have adapted a cornerstone analysis method 
from ecology, the point-transect distance sampling, to 
develop an innovative modelling framework to account 
for under-reporting bias in passive disease case detection. 
This quantitative tool uniquely accounts for the role of 
the observation process when predicting the spatial dis-
tribution of infection. Finally, we created a user-friendly 

predictive tool to explore how different scenarios of spa-
tial allocation of health centres affect the probability of 
disease reporting.

Extending the point-transect distance sampling 
method from wildlife observation to disease report-
ing at clinics required some fundamental assumptions 
to be modified. Specifically, traditional distance sam-
pling assumes perfect detection at zero distance and 

Scenario 1 - 100% clinics selected Scenario 2 - 50% clinics selected Scenario 3 - 25% clinics selected
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Fig. 5 Examples overall reporting probability, catchment areas and reporting probability at a single clinic, according to 3 different scenarios of 
number and positions of health centres in Komoé district in Burkina Faso, as predicted by the best distance sampling model. a Overall reporting 
probability. b Catchment area of each health centre. c Reporting probability to an individual selected clinic
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independence between observers. With the simplest 
form of point-transect distance sampling, double counts 
are allowed, because the probability of an object being 
recorded by one observer doesn’t affect the probabil-
ity of the same object being recorded again by another. 
In our epidemiological system the events of interest are 
uniquely detected, meaning that the reporting clinic 
effectively “absorbs” the occurrence of the event, so that 
it is not reported elsewhere. By using the generalised for-
mulation of the detection function presented in Eq.  (4), 
and by formulating a multinomial process under the 
normalisation we are proposing, we could relax the first 
two assumptions, and allow clinics to have a detection 
probability lower than 1 even at zero distance, because it 
is possible that any given patient living in proximity of a 
clinic (d ≈ 0) might report an infection case to a different 
clinic, so that P(0) < 1.

Here, another difference from traditional point tran-
sect distance sampling methods is that the distances that 
drive the detection probability may not be Euclidean. In 
epidemiological applications, it is unlikely that human 
mobility would follow straight-line distances, so dis-
tances were calculated from the road network. Addition-
ally, other travel covariates that may affect the probability 
of reporting would include road conditions or time of the 
year to allow for adverse road conditions during rainy 
seasons. Such information could improve the estimate of 
the rate at which reporting decreases.

Traditional distance sampling methods also assume 
that data are uniformly distributed around observation 
points. In wildlife surveys, if the animal population is not 
uniformly distributed (or if its distribution is unknown) 
this assumption can be met by ensuring that the observa-
tion points are positioned independently of the distribu-
tion of the study species. In the case of epidemiological 
data arising from passive surveillance, we violated this 
assumption because the observation points (health cen-
tres) are necessarily attached to the road network (i.e. vil-
lages and human settlements).

In traditional distance sampling, a monotonically 
decreasing shape of the detection function is generally 
assumed. In epidemiological applications, such mono-
tonic behaviour is not certain because it could be con-
founded by topography (road network) and the relative 
location of other clinics that could give rise to multiple 
peaks the detection curves.

In our study, we modelled an infection reporting pro-
cess as a function of distance from health centres [33, 
36, 68–71], and showed how additional non-spatial 
covariates (e.g. age and sex of patient can be included) 
in the model. We did not find any clear effect of these 
demographic variables. However, as in traditional dis-
tance sampling, a better fit to the observed data might 

potentially be achieved if additional covariates are 
recorded and their effects on the detection function are 
modelled. Other non-spatial covariates known to influ-
ence malaria reporting include socioeconomic status [8, 
10, 27, 28], ethnicity [29, 30], linguistic barriers [31], edu-
cation [16, 17, 53, 54] and the severity of symptoms (e.g. 
asymptomatic cases [22–26]). All of these covariates, can 
be easily added to our basic model, as we demonstrated 
with age and sex.

Estimates of under-reporting generated here can be 
interpreted as the proportion of under-reporting due 
to distance to clinics (which sums to the proportion of 
under-reporting due to other non-spatial factors). Our 
framework however could be extended to account for 
asymptomatic cases by simultaneously using active sur-
veys and passive case detection in a joint inferential 
framework [42].

Here, we assumed that the shape parameters of the 
detection functions were the same for each clinic. How-
ever, the shape of the detection function could be clinic-
specific if, for example, people had a preference for some 
clinics over others that was unrelated to distance. Stud-
ies of malaria in Africa indicate that a range of variables 
influence a patient’s choice of clinic, including cost of ser-
vices, opening hours, quality of infrastructure and equip-
ment, attitude of staff and availability of drugs [17]. In 
other words, there could be a “clinic effect” on the detec-
tion function that could be modelled by including further 
covariates at the clinic level. Hospital type and diagnostic 
capabilities were homogeneous in our study system, but 
if any quantitative measure to distinguish one clinic from 
another are available, these can readily be included in the 
model.

In this study we did not explicitly consider the role of 
population size on malaria incidence quantification, but 
instead focussed only on modelling the probability of 
reporting. Therefore our study quantifies the probabil-
ity that a case is reported at a given clinic, given that it 
arises at a particular point in space. This conditional 
model can be considered as the observation component 
in latent process model whose complementary part cap-
tures the epidemiological process generating disease 
cases in space. This could be modelled using a N-mixture 
model [63, 72]. In a previous paper [42], we proposed a 
framework for taking these two processes into account in 
an integrated model, simultaneously analysed data from 
active surveys and passive case detection, and validated 
it using a wide range of simulated scenarios. The results 
that we obtain on a set of real data here confirm that 
such methods provided powerful analysis tools for com-
plex spatial epidemiology studies, and show promise for 
combining a spatially heterogeneous observation model 
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with an epidemiological process in a novel inferential 
framework.

Although not sufficient on its own, the spatial access 
to health care is a necessary condition in the realization 
of actual access to health care [73]. Particularly in rural 
contexts of low-middle income countries, where health 
care planners must manage limited resources, there may 
be benefit from using strategic mapping tools to identify 
optimal location and distribution of clinics to maximize 
community access and uptake [38].

Conclusions
Our proposed analytical framework and interactive tool 
allows to model different scenarios, in which the overall 
number and spatial distribution of health service pro-
vision can be varied, to assess the impact on people’s 
probability of reporting. Such information can be used 
to highlight therefore the hot-spots and cold-spots of 
health care coverage in the area, and it could enhance the 
decision-making processes with respect to planning new 
facilities. Furthermore, the possibility of mapping the 
catchment areas of each health centre provides a useful 
tool for evaluating the effectiveness of the current net-
work of clinics and identifying which clinics are relatively 
under- or overexploited.

In its current form, our tool has mostly an illustra-
tive purpose. However, if the shape of detection func-
tions estimated here is transferable to other areas where 
no data are available, the same interactive tools can be 
applied just through provision of the GIS files (e.g. in a 
shapefile format) of health centres and the road network.

Several methods have been used to define the catch-
ment areas of health centres [74]. Here we offer an empir-
ical method, in the form of the interactive Shiny App, 
that can provide healthcare planners with a user-friendly 
tool to investigate the probability of utilization of a given 
health facility over a spatial gradient. This approach, by 
enabling visualization of how the health monitoring 
and treatment coverage are influenced by changing the 
number and position of health centres, will benefit infra-
structure planning with respect to the positioning of new 
clinics, and new roads. Our framework can incorporate 
covariates at both the patient and clinic levels and has 
wider applicability beyond the specific disease, scale and 
covariate data available for our case study.

Acknowledgements
We would like to thank Hilary Ranson and Anne Wilson for their useful com-
ments on an earlier draft of the manuscript.

Authors’ contributions
LN and JM designed the model and the computational framework. MG and 
DO collected the data at the health centres and anonymized and digitized 
them, under the coordination and supervision of ABT and SN. LN analysed 
the data and wrote the main body of the manuscript. HMF and JM supervised 

the entire project, from data collection to data analysis, and made a major 
contributor in writing the manuscript. All authors read and approved the final 
manuscript.

Funding
This project has received funding from the Wellcome Trust [Grant No. 
200222/Z/15/Z] MiRA.

Availability of data and materials
The data that support the findings of this study are available from the first 
author Luca Nelli but restrictions apply to the availability of these data, which 
were used under license for the current study, and so are not publicly avail-
able. Data are however available from the authors upon reasonable request 
and with permission of the Burkina Faso Ministry of Health - National Centre 
of Research and Training on Malaria (Centre National De Recherche et Formation 
sur le Paludisme, CNRFP).

Ethics approval and consent to participate
Ethical clearance was obtained from the Ethical Committee for research in 
Health of the Ministry of Health of Burkina Faso (EC V3.0_CERS) and the Institu-
tional Bioethical Committee of the local research institution (National Malaria 
Research and Training Centre, CNRFP).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 University of Glasgow, Institute of Biodiversity Animal Health and Compara-
tive Medicine, Glasgow, UK. 2 Centre National De Recherche et Formation sur 
le Paludisme, Ouagadougou, Burkina Faso. 

Received: 20 October 2019   Accepted: 9 April 2020

References
 1. Rudan I, Lawn J, Cousens S, Rowe AK, Boschi-Pinto C, Tomašković L, Men-

doza W, Lanata CF, Roca-Feltrer A, Carneiro I, et al. Gaps in policy-relevant 
information on burden of disease in children: a systematic review. Lancet. 
2005;365(9476):2031–40.

 2. Gething PW, Noor AM, Gikandi PW, Ogara EAA, Hay SI, Nixon MS, Snow 
RW, Atkinson PM. Improving imperfect data from health management 
information systems in africa using space-time geostatistics. PLOS Med. 
2006;3(6):e271.

 3. Dickersin K, Chalmers I. Recognizing, investigating and dealing with 
incomplete and biased reporting of clinical research: from Francis Bacon 
to the WHO. J R Soc Med. 2011;104(12):532–8.

 4. Smyth RMD, Kirkham JJ, Jacoby A, Altman DG, Gamble C, Williamson 
PR. Frequency and reasons for outcome reporting bias in clinical trials: 
interviews with trialists. BMJ. 2011;342:c7153.

 5. Gibbons CL, Mangen MJJ, Plass D, Havelaar AH, Brooke RJ, Kramarz P, 
Peterson KL, Stuurman AL, Cassini A, Fèvre EM, et al. Measuring under-
reporting and under-ascertainment in infectious disease datasets: a 
comparison of methods. BMC Public Health. 2014;14(1):147.

 6. Runge-Ranzinger S, McCall PJ, Kroeger A, Horstick O. Dengue disease sur-
veillance: an updated systematic literature review. Trop Med Int Health. 
2014;19(9):1116–60.

 7. Guagliardo MF. Spatial accessibility of primary care: concepts, methods 
and challenges. Int J Health Geograph. 2004;3(1):3–3.

 8. Peters DH, Garg A, Bloom G, Walker DG, Brieger WR, Hafizur Rahman M. 
Poverty and access to health care in developing countries. Ann N Y Acad 
Sci. 2008;1136(1):161–71.

 9. Jacobs B, Ir P, Bigdeli M, Annear PL, Van Damme W. Addressing access 
barriers to health services: an analytical framework for selecting appropri-
ate interventions in low-income Asian countries. Health Policy Planning. 
2012;27(4):288–300.



Page 13 of 14Nelli et al. Int J Health Geogr           (2020) 19:16  

 10. Lazar M, Davenport L. Barriers to health care access for low income fami-
lies: a review of literature. J Commun Health Nurs. 2018;35(1):28–37.

 11. Dussault G, Franceschini MC. Not enough there, too many here: under-
standing geographical imbalances in the distribution of the health 
workforce. Human Resour Health. 2006;4(1):12.

 12. Kelly C, Hulme C, Farragher T, Clarke G. Are differences in travel time or 
distance to healthcare for adults in global north countries associated 
with an impact on health outcomes? A systematic review. BMJ Open. 
2016;6(11):e013059.

 13. Weiss DJ, Nelson A, Gibson HS, Temperley W, Peedell S, Lieber A, Hancher 
M, Poyart E, Belchior S, Fullman N, et al. A global map of travel time to 
cities to assess inequalities in accessibility in 2015. Nature. 2018;553:333.

 14. Veugelers PJ, Yip AM. Socioeconomic disparities in health care use: does 
universal coverage reduce inequalities in health? J Epidemiol Commun 
Health. 2003;57(6):424–8.

 15. Gage AJ. Barriers to the utilization of maternal health care in rural Mali. 
Soc Sci Med. 2007;65(8):1666–82.

 16. Kiwanuka SN, Ekirapa EK, Peterson S, Okui O, Rahman MH, Peters D, Pariyo 
GW. Access to and utilisation of health services for the poor in Uganda: 
a systematic review of available evidence. Trans R Soc Trop Med Hyg. 
2008;102(11):1067–74.

 17. Kizito J, Kayendeke M, Nabirye C, Staedke SG, Chandler CIR. Improving 
access to health care for malaria in Africa: a review of literature on what 
attracts patients. Malaria J. 2012;11(1):55.

 18. World Health Organization: World malaria report 2018. 2018.
 19. World Health Organization: Disease surveillance for malaria control: an 

operational manual. 2012.
 20. Cibulskis RE, Aregawi M, Williams R, Otten M, Dye C. Worldwide incidence 

of malaria in 2009: estimates, time trends, and a critique of methods. PLoS 
Med. 2011;8(12):e1001142.

 21. Beatty ME, Stone A, Fitzsimons DW, Hanna JN, Lam SK, Vong S, Guzman 
MG, Mendez-Galvan JF, Halstead SB, Letson GW. Best practices in dengue 
surveillance: a report from the Asia-Pacific and Americas Dengue Preven-
tion Boards. PLoS Neglected Trop Dis. 2010;4(11):e890.

 22. Lindblade KA, Steinhardt L, Samuels A, Kachur SP, Slutsker L. The silent 
threat: asymptomatic parasitemia and malaria transmission. Expert Rev 
Anti-infective Ther. 2013;11(6):623–39.

 23. Bousema T, Okell L, Felger I, Drakeley C. Asymptomatic malaria infections: 
detectability, transmissibility and public health relevance. Nat Rev Micro-
biol. 2014;12:833.

 24. Zhou G, Afrane YA, Malla S, Githeko AK, Yan G. Active case surveillance, 
passive case surveillance and asymptomatic malaria parasite screening 
illustrate different age distribution, spatial clustering and seasonality in 
western Kenya. Malaria J. 2015;14(1):41.

 25. Chen I, Clarke SE, Gosling R, Hamainza B, Killeen G, Magill A, O’Meara W, 
Price RN, Riley EM. “Asymptomatic” malaria: a chronic and debilitating 
infection that should be treated. PLoS Med. 2016;13(1):e1001942.

 26. Tiedje KE, Oduro AR, Agongo G, Anyorigiya T, Azongo D, Awine T, 
Ghansah A, Pascual M, Koram KA, Day KP. Seasonal variation in the 
epidemiology of asymptomatic Plasmodium falciparum infections across 
two catchment areas in Bongo District, Ghana. Am J Trop Med Hyg. 
2017;97(1):199–212.

 27. Porterfield SL, McBride TD. The effect of poverty and caregiver education 
on perceived need and access to health services among children with 
special health care needs. Am J Public Health. 2007;97(2):323–9.

 28. Ahmed S, Creanga AA, Gillespie DG, Tsui AO. Economic status, education 
and empowerment: implications for maternal health service utilization in 
developing countries. PLoS ONE. 2010;5(6):e11190.

 29. Betancourt JR, Green AR, Carrillo JE, Ananeh-Firempong O. Defining cul-
tural competence: a practical framework for addressing racial/ethnic dis-
parities in health and health care. Public Health Rep. 2003;118(4):293–302.

 30. Young AS, Rabiner D. Racial/ethnic differences in parent-reported barriers 
to accessing children’s health services. Psychol Serv. 2015;12(3):267–73.

 31. van Rosse F, de Bruijne M, Suurmond J, EssinkBot ML, Wagner C. Lan-
guage barriers and patient safety risks in hospital care A mixed methods 
study. Int J Nurs Stud. 2016;54:45–53.

 32. Schuurman N, Fiedler RS, Grzybowski SCW, Grund D. Defining rational 
hospital catchments for non-urban areas based on travel-time. Int J 
Health Geograph. 2006;5:43–43.

 33. Müller I, Smith T, Mellor S, Rare L, Genton B. The effect of distance from 
home on attendance at a small rural health centre in Papua New Guinea. 
Int J Epidemiol. 1998;27(5):878–84.

 34. Alegana VA, Wright JA, Pentrina U, Noor AM, Snow RW, Atkinson PM. Spa-
tial modelling of healthcare utilisation for treatment of fever in Namibia. 
Int J Health Geograph. 2012;11(1):6.

 35. Tanser F, Gijsbertsen B, Herbst K. Modelling and understanding 
primary health care accessibility and utilization in rural South Africa: 
an exploration using a geographical information system. Soc Sci Med. 
2006;63(3):691–705.

 36. Feikin DR, Nguyen LM, Adazu K, Ombok M, Audi A, Slutsker L, Lindblade 
KA. The impact of distance of residence from a peripheral health facility 
on pediatric health utilisation in rural western Kenya. Tropical Med Int 
Health. 2009;14(1):54–61.

 37. Gabrysch S, Cousens S, Cox J, Campbell OMR. The influence of dis-
tance and level of care on delivery place in rural Zambia: a study of 
linked national data in a geographic information system. PLOS Med. 
2011;8(1):e1000394.

 38. Schuurman N, Randall E, Berube M. A spatial decision support tool for 
estimating population catchments to aid rural and remote health service 
allocation planning. Health Inform J. 2011;17(4):277–93.

 39. Karra M, Fink G, Canning D. Facility distance and child mortality: a multi-
country study of health facility access, service utilization, and child health 
outcomes. Int J Epidemiol. 2017;46(3):817–26.

 40. Escamilla V, Calhoun L, Winston J, Speizer IS. The role of distance and 
quality on facility selection for maternal and child health services in 
urban Kenya. J Urban Health. 2018;95(1):1–12.

 41. Battle KE, Lucas TC, Nguyen M, Howes RE, Nandi AK, Twohig KA, Pfeffer 
DA, Cameron E, Rao PC, Casey D. Mapping the global endemicity and 
clinical burden of Plasmodium vivax, 2000–17: a spatial and temporal 
modelling study. Lancet. 2019;394(10195):332–43.

 42. Nelli L, Ferguson HM, Matthiopoulos J. Achieving explanatory depth 
and spatial breadth in infectious disease modelling: integrating active 
and passive case surveillance. Stat Methods Med Res. 2019. https ://doi.
org/10.1177/09622 80219 85638 0.

 43. Weiss DJ, Lucas TC, Nguyen M, Nandi AK, Bisanzio D, Battle KE, Cameron 
E, Twohig KA, Pfeffer DA, Rozier JA, Gibson HS. Mapping the global preva-
lence, incidence, and mortality of Plasmodium falciparum, 2000–2017: a 
spatial and temporal modelling study. Lancet. 2019;394(10195):322–31.

 44. Buckland ST. Introduction to distance sampling: estimating abundance of 
biological populations. Oxford: Oxford University Press; 2001.

 45. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas 
L. Advanced distance sampling: estimating abundance of biological 
populations. Oxford: Oxford Univeristy Press; 2004.

 46. Buckland ST, Rexstad EA, Marques TA, Oedekoven C: Distance Sampling: 
Methods and Applications: Springer; 2015.

 47. Cocking C, Flessa S, Reinelt G. Locating Health Facilities in Nouna District, 
Burkina Faso. In Springer. Berlin Heidelberg. 2006;2006:431–6.

 48. Marschall P, Flessa S. Efficiency of primary care in rural Burkina Faso. A 
two-stage DEA analysis. Health Econ Rev. 2011;1(1):5.

 49. Cocking C, Flessa S, Reinelt G. Improving access to health facilities in 
Nouna district, Burkina Faso. Socio Econ Planning Sci. 2012;46(2):164–72.

 50. Samadoulougou S, Maheu-Giroux M, Kirakoya-Samadoulougou F, 
De Keukeleire M, Castro MC, Robert A. Multilevel and geo-statistical 
modeling of malaria risk in children of Burkina Faso. Parasites vectors. 
2014;7(1):350.

 51. Diboulo E, Sié A, Vounatsou P. Assessing the effects of malaria interven-
tions on the geographical distribution of parasitaemia risk in Burkina 
Faso. Malaria J. 2016;15(1):228.

 52. Khan AA. An integrated approach to measuring potential spatial access 
to health care services. Socio Econ Planning Sci. 1992;26(4):275–87.

 53. Wang F. Measurement, optimization, and impact of health care acces-
sibility: a methodological review. Annals Assoc Am Geographers. 
2012;102(5):1104–12.

 54. Oduro AR, Maya ET, Akazili J, Baiden F, Koram K, Bojang K. Monitoring 
malaria using health facility based surveys: challenges and limitations. 
BMC Public Health. 2016;16(1):354.

 55. Tang J-H, Chiu Y-H, Chiang P-H, Su M-D, Chan T-C. A flow-based statistical 
model integrating spatial and nonspatial dimensions to measure health-
care access. Health Place. 2017;47:126–38.

https://doi.org/10.1177/0962280219856380
https://doi.org/10.1177/0962280219856380


Page 14 of 14Nelli et al. Int J Health Geogr           (2020) 19:16 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

 56. Csardi G, Nepusz T. The igraph software package for complex network 
research. Int J Complex Syst. 2006;1695(5):1–9.

 57. R Development Core Team: R: A language and environment for statistical 
computing. In. Vienna, Austria: R Foundation for Statistical Computing; 
2018.

 58. QGIS Development Team: QGIS Geographic Information System. Open 
Source Geospatial Foundation Project. 2018.

 59. Richardson S, Thomson A, Best N, Elliott P. Interpreting posterior relative 
risk estimates in disease-mapping studies. Environ Health Perspect. 
2004;112(9):1016–25.

 60. Lawson AB: Bayesian disease mapping: hierarchical modeling in spatial 
epidemiology: CRC press; 2013.

 61. Plummer M: JAGS: A program for analysis of Bayesian graphical models 
using Gibbs sampling. In: Proceedings of the 3rd international workshop on 
distributed statistical computing: 2003: Vienna, Austria; 2003: 125.

 62. Plummer MS, Alexey Denwood, Matt: rjags: Bayesian Graphical Models 
using MCMC. Version 4.6. Downloaded from https ://cran.r-proje ct.org/
web/packa ges/rjags /index .html. 2016.

 63. Kéry M, Royle JA: Applied Hierarchical Modeling in Ecology: Analysis of 
distribution, abundance and species richness in R and BUGS: Volume 1: 
Prelude and Static Models: Academic Press; 2015.

 64. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures 
of model complexity and fit. J Royal Stat Soc. 2002;64(4):583–639.

 65. Ben-David A. About the relationship between ROC curves and Cohen’s 
kappa. Eng Appl Artif Intell. 2008;21(6):874–82.

 66. Cheng J, Karambelkar B, Xie Y: leaflet: Create Interactive Web Maps with 
the JavaScript ‘Leaflet’. In.; 2018.

 67. Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J: shiny: Web Application 
Framework for R. In.; 2018.

 68. Nemet GF, Bailey AJ. Distance and health care utilization among the rural 
elderly. Soc Sci Med. 2000;50(9):1197–208.

 69. Schoeps A, Gabrysch S, Niamba L, Sié A, Becher H. The effect of distance 
to health-care facilities on childhood mortality in rural Burkina Faso. Am J 
Epidemiol. 2011;173(5):492–8.

 70. Larson PS, Mathanga DP, Campbell CH, Wilson ML. Distance to health 
services influences insecticide-treated net possession and use among six 
to 59 month-old children in Malawi. Malaria J. 2012;11(1):18.

 71. Biswas RK, Kabir E. Influence of distance between residence and health 
facilities on non-communicable diseases: an assessment over hyperten-
sion and diabetes in Bangladesh. PLoS ONE. 2017;12(5):e0177027.

 72. Royle JA. N-mixture models for estimating population size from spatially 
replicated counts. Biometrics. 2004;60(1):108–15.

 73. Khan AA, Bhardwaj SM. Access to health care: a conceptual frame-
work and its relevance to health care planning. Eval Health Prof. 
1994;17(1):60–76.

 74. Luo W, Qi Y. An enhanced two-step floating catchment area (E2SFCA) 
method for measuring spatial accessibility to primary care physicians. 
Health Place. 2009;15(4):1100–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://cran.r-project.org/web/packages/rjags/index.html
https://cran.r-project.org/web/packages/rjags/index.html

	Distance sampling for epidemiology: an interactive tool for estimating under-reporting of cases from clinic data
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Statistical analyses

	Malaria case study
	Study area and data collection
	Data analysis
	Spatial mapping of reporting probability
	Interactive mapping

	Results
	Discussion
	Conclusions
	Acknowledgements
	References




