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Abstract 

Background: Inaccurately modelled environmental exposures may have important implications for evidence-based 
policy targeting health promoting or hazardous facilities. Travel routes modelled using GIS generally use shortest 
network distances or Euclidean buffers to represent journeys with corresponding built-environment exposures cal-
culated along these routes. These methods, however, are an unreliable proxy for calculating child built-environment 
exposures as child route choice is more complex than shortest network routes.

Methods: We hypothesised that a GIS model informed by characteristics of the built-environment known to influ-
ence child route choice could be developed to more accurately model exposures. Using GPS-derived walking com-
mutes to and from school we used logistic regression models to highlight built-environment features important in 
child route choice (e.g. road type, traffic light count). We then recalculated walking commute routes using a weighted 
network to incorporate built-environment features. Multilevel regression analyses were used to validate exposure 
predictions to the retail food environment along the different routing methods.

Results: Children chose routes with more traffic lights and residential roads compared to the modelled shortest net-
work routes. Compared to standard shortest network routes, the GPS-informed weighted network enabled GIS-based 
walking commutes to be derived with more than three times greater accuracy (38%) for the route to school and more 
than 12 times greater accuracy (92%) for the route home.

Conclusions: This research advocates using weighted GIS networks to accurately reflect child walking journeys to 
school. The improved accuracy in route modelling has in turn improved estimates of children’s exposures to poten-
tially hazardous features in the environment. Further research is needed to explore if the built-environment features 
are important internationally. Route and corresponding exposure estimates can be scaled to the population level 
which will contribute to a better understanding of built-environment exposures on child health and contribute to 
mobility-based child health policy.
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Background
Understanding how exposure to the built-environment 
impacts on human health has received increased atten-
tion over the past two decades. Public health issues 
such as obesity, diabetes and common mental health 
disorders are not being affected by current policies and 
interventions with global trends showing an increase in 
these non-communicable diseases. It is imperative for 
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researchers, policy makers and practitioners to better 
understand the role of the built-environment on health. 
A thorough understanding of how health-outcomes are 
associated with the built-environment provides evi-
dence for action to improve physical and mental health 
for whole populations.

It is well established that daily mobility is a key deter-
minant of built-environment exposure as it defines 
when, where and how people are exposed to differ-
ent physical and social environments. Daily mobility 
describes the spatiotemporal patterns of an individual’s 
movement during their day-to-day life [1, 2]; including 
three key factors: spatial, temporal and the nature of 
activities [1].

Daily mobility has been measured subjectively using 
retrospective surveys such as life-space assessment [3], 
travel diaries [4] and interactive map-based question-
naires [5]. Alternative methods have used Geographic 
Information Systems (GIS) to model daily mobility, but 
these methods often over simplify spatiotemporal pat-
terns of an individual’s everyday movement in their envi-
ronment. Particularly for children where route choice is 
complex and social factors influence where a child may 
travel [6]. Studies using GIS-modelled exposures often 
focus on a single aspect of daily mobility (e.g. home or 
school/work environment), however, it is unlikely for 
an individual to only be exposed to one environment in 
day-to-day life. Individuals visit multiple locations at dif-
ferent times of day and are therefore exposed to numer-
ous environments (e.g. home, school/work, hobbies). It is 
therefore important to capture multiple exposure envi-
ronments when looking at the influence of the built envi-
ronment on health.

Commuting is one aspect of daily mobility commonly 
represented by Euclidean distances or shortest network 
routes. However, these measures have been found to be 
insufficient in representing aspects of child daily mobil-
ity such as commuting routes, particularly children who 
walk to and from school [7–9]. Using the shortest net-
work route (SNR) as a proxy for the route a child takes 
to school has been found to be a reliable proxy for the 
distance they travel, but not for the environment they 
are exposed to. This is especially true for children who 
have a walking commute to and from school, where route 
choice is often more complex than just the shortest route. 
Furthermore, the route taken to school can differ to the 
route home from school [8]. Characteristics of the built-
environment, such as road type, woodland and traffic 
lights, have been found to be associated with route choice 
[10–12]; in particular the walk home from school. Stud-
ies using GIS-modelled exposures have not differenti-
ated between the route to school and route home in their 
modelling.

A preferred method to measure exposure in children 
is to use GPS recording devices as these instruments 
have become a reliable and accurate way to objectively 
measure individual-level daily mobility [13–15]. Stud-
ies have investigated adult and child daily mobility and 
corresponding exposures using GPS data for a range of 
built-environment exposures such as fast food outlets, 
greenspace and pollution. Many of these studies that have 
explored children’s daily mobility [16, 17] have focussed 
on the importance of the school commute; investigat-
ing physical activity levels and exposure to the ‘retail 
food environment’ (RFE) along active commutes [8, 10, 
18–21]. However, daily mobility measures derived from 
GPS data can be expensive and time consuming to imple-
ment and are therefore not practical for recording and 
analysing population-level exposures [22]. Population-
level research is essential to explore and understand simi-
larities and differences across and within populations. To 
bring about large-scale changes in a population’s health, 
policy needs to be based on evidence from national-scale 
studies. Evidence has shown that even small improve-
ments in health at an individual-level can lead to a sub-
stantial gain at a population-level [23].

To address limitations in previous studies, this paper 
presents a method that can be used to model population-
level, daily commuting routes for children that walk to 
school. The method contributes to improving individual-
level daily mobility measures and thus measuring expo-
sure environments for children through four steps:

 i. We processed GPS data for a cohort of 995 children 
aged 13–14 years and identified walking routes to 
school and home. We generated SNR from home 
to school for children who walked to school and/or 
home.

 ii. We calculated built-environment characteristics 
along the GPS and SNR routes. We used logistic 
regression analyses to identify the most important 
built-environment characteristics along routes to 
school and home. This meant we could weight roads 
based on objectively collected data to model child 
preference for route choice.

 iii. We generated routes to school and home using a 
weighted network. We used odds ratios from the 
logistic regression analysis to inform cost values on 
a network. We used this weighted network to pro-
duce predicted weighted network routes (WNR) to 
school and home.

 iv. We validate our predictions by comparing the 
WNR with GPS route data using intersection anal-
yses. We also calculate exposure to the RFE and 
undertake multilevel regression analyses to validate 
exposures generated from our modelled routes.
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This research contributes to childhood built-environ-
ment exposure research that involves spatial mobility 
assessment, as it highlights the potential to generate pop-
ulation-level exposures using GIS. Moreover, enhanced 
knowledge of modelling the daily exposure to the built-
environment at a population-level can be applied to 
different subgroups of the population and numerous 
exposures such as fast food, physical activity opportuni-
ties, pollution and greenspace.

Methods
All GIS and GPS data processing and analysis was under-
taken in a PostGIS database [24] using pgadmin3 ver-
sion 9.5 [25]. GIS-generated routes were calculated using 
pgRouting [26], a geospatial routing extension for Post-
GIS databases. All statistical analyses were undertaken 
using R version 3.3.3.

GPS data processing and computation of routes to school
The GPS data was provided by researchers who had 
worked on a large-scale study with 995 children aged 
13–15 [27]. Data collection methods are reported in 
detail elsewhere. In summary, the Physical Environment 
and Activity Relationships (in adolescents) (PEAR) study 
was a cross-sectional study of students from 15 schools 
across Bristol, South Gloucestershire, North Somerset, 
and Bath and North East Somerset aged 13–14  years 
old. A University Ethics Committee approved the study 
written informed consent was obtained from a parent or 
guardian of all participating adolescents. Data were col-
lected between November 2012 and March 2014 [28].

GPS data processing
Raw GPS data was received by the data providers. For 
each PEAR participant, home locations as XY coordi-
nates and the name of the school attended was provided. 
Home and school building footprints were extracted 
from OS Mastermap Topography Layer [29], provided 
by DigiMap [30]. All data were imported into a PostGIS 
database using the command line tool pgfutter [31]. A 
criteria-based approach was used to prepare the GPS 
data for analysis. The method was based on published 
criteria-based methods [32, 33] and comprised of three 
main stages: pre-processing; processing and post-pro-
cessing. This workflow is summarised in Fig. 1.

Pre‑processing GPS data (inclusion criteria) Inclusion 
criteria were developed to select points exclusively from 
the route to school or home from school. Individuals were 
excluded that did not contain both home and school loca-
tion (n = 5). The inclusion criteria were:

 i. Points recorded on a weekday.

 ii. Points recorded between (07:30 and 09:30) and 
(14:30: and 16:30).

 iii. Points recorded outside school building footprint.
 iv. Points recorded more than 40 m away from home 

location.
 v. Points recorded outside of any building footprints.

Processing GPS data The GPS points were indexed to 
categorise individual trips made by each participant. For 
each trip, GPS points were ordered by their timestamp. 
A trip was defined as consecutive points on a single day 
during morning commute time (between 7:30 and 9:30), 
or during afternoon commute time (between 14:30 and 
16:30). Each trip was assumed to represent a participant 
travelling from home to school, or from school to home. 
The GPS points for each trip were then aggregated to 
create line geometries. Home and school locations were 
appended on to each end of the line geometries because 
they had been removed in the pre-processing stage. Walk-
ing routes were extracted from the data based on aver-
age speed of the points that made up each trip (average 
speed < 10 m/s) [32].

Post‑processing Remaining outliers were removed by 
selecting points that were more than 100  m from any 
other GPS points belonging to that trip. Routes were 
manually inspected to ensure that only the route from 
home to school and home had been captured. Any points 
representing other journeys were removed e.g. after some 
children arrived home, they left home again before 16:30. 
These points were removed manually.

Modelled routes to school and home from school
SNR from home to school and school to home were cal-
culated for each PEAR participant that walked to school 
and/or home from school. The SNR were generated using 
centrelines from an open source road network down-
loaded from OpenStreetMap [34].

Built‑environment characteristics
Generating built‑environment characteristics
Characteristics of the built-environment known to influ-
ence child route-choice were calculated for GPS walk-
ing routes and the corresponding GIS-generated SNRs. 
Table 1 defines the built-environment characteristics that 
were calculated, how they were calculated and underly-
ing data sources.

Statistical analyses
The built-environment characteristics listed in Table  1 
were included as independent variables in conditional 
logistic regression models to discriminate between the 
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built-environment characteristics along the GPS routes 
and the SNR. We fitted two models, A and B for the 
routes, to school and home respectively. A backward step-
wise method was used to fit the models:

where P(Y) is the probability of Y occurring, e is the base 
of natural logarithms and  b0 is the constant. For j = 1,…,n 
 Xji are the predictor variables and  bj are the predictor 
coefficients.

Generating routes to school and home using a weighted 
network
Building a weighted network
Centrelines downloaded from OpenStreetMap [34] 
were the basis of the road network. Odds ratios derived 

P(Y ) =
1

1+ e−(b0+b1X1i+b2X2i+···bnXni)

from the logistic regression models to discriminate 
between the GPS route and SNR were used to inform 
cost values that were assigned to network arcs. Cost-
values were applied to every network arc based on road 
type (Table 6). Then, network arcs were flagged where 
traffic lights (point geometry) and food outlets (point 
geometry) were within 25 m of the network arc. If the 
arc was within 25 m of a food outlet, the arc was reas-
signed an impedance cost (Fig. 2).

Initially, where there were more built-environment 
characteristics on GPS routes compared with SNR 
(e.g. traffic lights had an OR > 1), a lower cost imped-
ance was assigned to on the network. Network arcs 
that contained built-environment characteristics that 
were fewer along GPS routes compared to SNR were 
allocated a higher impedance cost on the network (e.g. 
main roads had an OR < 1).

Fig. 1 Workflow of GPS point data processing (n)
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A simple machine learning approach was then imple-
mented to find the optimum impedance costs to improve 
the accuracy of GIS generated routes to school and home 
from school compared with GPS routes. The final imped-
ance costs are reported as the optimal weights to apply 
when generating cohort-level GPS walking routes to 
school and home from school.

Generating routes using the weighted network: weighted 
network routes (WNR)
The Dijkstra algorithm [38] was used to calculate a single 
route to school and home with minimum cost in terms 
of distance travelled for each person. The WNR to school 
and home were then used to calculate associated expo-
sures to the RFE along the commute to and from school. 
The weighted network exposures (WNE) to the RFE were 
defined as the number of food outlets along the WNR 
within 100 m of the route [8, 10, 15, 39]. We defined the 
RFE using postcode level, food outlet point data down-
loaded from the food standards agency [40] to represent 
trading outlets that were open when the GPS routes were 
collected.

Statistical validation of WNR
Similarity between GPS route shape and WNR shape was 
determined by calculating the percentage of WNR that 
intersected within 50 m of the corresponding GPS routes 
[8]. Descriptive statistics of the intersection between GPS 
routes and WNRs were calculated.

A multilevel linear regression model was fitted to assess 
the association between exposure to the RFE along GPS 
routes and WNR. Multilevel linear regression analyses 

were fitted to account for the hierarchical structure of 
the data; route exposures for individuals, and individuals 
were clustered within 15 schools. Separate models were 
fitted to assess the relationship between GPS exposures 
and WNE to the RFE for routes to school routes home 
from school. All statistical analysis was undertaken in 
RStudio (version 3.3.3).

Results
GPS routes and route characteristics
In total, 463 individuals provided GPS data. Specifi-
cally, 333 individuals provided GPS data for both their 
walking route to school and walking route home, 44 
individuals provided GPS data exclusively for their 
walking route to school, and 86 individuals provided 
GPS data only for their walking route home from 
school. The GPS data yielded 949 walking routes to 
school for 377 individuals and 976 walking routes home 
from school, were recorded for 409 individuals. Tables 2 
and 3 summarise the built-environment characteristics 
of the GPS walking routes recorded in the GPS dataset. 
As described above, some individuals provided data 
for their walk to school and others for the route home 
from school. The results generally characterise walking 
routes to school and walking routes home from school. 
The mean distance recorded by the GPS data for walk-
ing routes to school was 1.5 km. The shortest route was 
recorded at 0.7 km and the maximum distance travelled 
walking to school was 5.2 km. The median values of the 
routes to school were, 20% of the route was along main 
roads, 52% along residential roads and 23% along foot-
paths. The median number of food outlets on the walk 

Table 1 Built-environment characteristics calculated along  GPS and  SNR routes in  PostGIS; including  how  built-
environment characteristic was defined and data source

Built‑environment 
characteristic

Definition Data source

Length of route (km) Length of route in kilometres Line geometries were downloaded from OSM [34]

Bluespace (%) Percentage of route along visible water (e.g. river, canal) Bluespace polygon data were downloaded from OSM [34]

Traffic lights (n) Total number of traffic light signals along route Traffic light point data obtained from OSM [34]

Accidents (n) Total number of police-recorded traffic-related incidents along 
route

Road traffic accident data was downloaded from Stats19 [35]. 
Accidents that occurred between the school commuting 
hours (7:30–9:30 and 14:30–16:30) were extracted and 
represented as point data

Type of street (%)
a. Main road
b. Residential
c. Minor Road
d. Footpath

Percentage of route along this road type The OSM road types were aggregated into four road classifica-
tions that have been used in the literature [11]: main road, 
minor road, residential road and footpath

Woodland Percentage of route that has woodland within 25 m of the 
route

Woodland polygon data were downloaded from OS Meridian 
2 [36]

Food outlets Total number of food outlets within 100 m of route Postcode level food outlet point data were downloaded from 
the Food Standards Agency [37]
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Fig. 2 Representation of the impact of cost values on modelled routes

Table 2 Summarises the environmental characteristics along the walking routes to school recorded in the PEAR dataset

Bluespace (%) describes the percentage of the route that is within 50 m of and bluespaces. Main road, residential road, footpath and minor road describe the 
percentage of the route that traverses these road types. Traffic lights, Pedestrian crossing, accidents and exposure are counts of these features

Mean Median Min Max Range Skew Kurtosis SD

Distance (km) 1.55 1.41 66 5.18 5.12 0.79 0.68 0.88

Bluespace (%) 2 0 0 43 43 4.44 23.83 5.12

Traffic lights (n) 0 0 0 12 12 4.04 20.02 1.25

Pedestrian crossing (n) 1 0 0 9 9 2.69 7.57 1.48

Accidents (n) 2 1 0 21 21 2.04 4.24 3.39

Main road (%) 27 20 0 100 100 0.72 − 0.67 26.33

Residential road (%) 55 52 0 100 100 0.11 − 0.98 25.33

Footpath (%) 28 23 0 94 94 0.83 0.01 22.13

Minor road (%) 11 5 0 97 97 2.32 6.40 15.77

Food outlets (n) 6 3 0 70 70 3.00 10.80 9.44
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to school was 3. The mean distance travelled on the 
route home was 1.5 km. The minimum distance walked 
on the route home was 0.1 km and the maximum dis-
tance walked was 7.2  km. The median percentage of 
road type traversed did not differ greatly from morning 
routes for main roads, residential roads and footpaths 
(20%, 51% and 23% respectively). The percentage of 
the route along footpaths was greater for routes home 
compared with routes to school. The median number of 
food outlets on the walk home was 2 outlets. The range 
of route length for routes home was greater than routes 
to school by 1.9 km.

Built‑environment characteristics along routes to and from 
school
Table  4 shows the results of the conditional logistic 
regression for walking routes to school. Table 5 shows the 
results of the conditional logistic regression for walking 
routes home.

Route to school
The odds ratios (OR) in for routes to school indicated 
that along the route to school, 15% (OR 1.15, 95% CI 1.07, 
1.14) more of the GPS route was along a blue space and 
contained 46% (OR 1.46, 95% CI 1.11, 1.92) more traffic 
lights compared to SNR. The ORs for main roads, resi-
dential, footpaths and minor roads indicate that the GPS 
routes contained a significantly smaller percentage of the 
route along these road types. The GPS routes had a mean 
number of food outlets of 6 and the OR suggested this 
was 8% less than exposure along the SNR for the walk to 
school (OR 0.92, 95% CI 0.83, 0.98).

Route home from school
The odds ratios (OR) for routes home from school indi-
cated that there were 9% (OR 1.09, 95% CI 1.03, 1.17) 
more blue spaces along the GPS routes compared to SNR 
and 77% (OR 1.77, 95% CI 1.33, 2.37) more traffic lights 
along the walk home from school. The percentage of the 
routes along main roads, residential, footpaths and minor 

Table 3 Summarises the environmental characteristics along the walking routes home recorded in the PEAR dataset

Bluespace (%) describes the percentage of the route that is within 50 m of bluespaces. Main road, residential road, footpath and minor road describe the percentage 
of the route that traverses these road types. Traffic lights, pedestrian crossing, accidents and exposure are counts of these features

Mean Median Min Max Range Skew Kurtosis SD

Distance (km) 1.51 1.37 0.10 7.17 7.07 1.15 2.36 0.913

Bluespace (%) 2 0 0 39 39 4.11 20.73 4.97

Traffic lights (n) 0 0 0 13 13 4.78 29.96 1.16

Pedestrian crossing (n) 1 0 0 10 10 2.66 8.00 1.36

Accidents (n) 2 1 0 24 24 2.70 8.98 3.36

Main road (%) 26 20 0 100 100 0.76 − 0.48 25.81

Residential road (%) 53 51 0 100 100 0.21 − 0.96 25.77

Footpath (%) 29 23 0 98 98 0.77 − 0.24 24.09

Minor road (%) 11 6 0 98 98 2.46 7.23 15.91

Food outlets (n) 5 2 0 63 63 3.30 13.71 8.38

Table 4 Conditional logistic regression results 
for environmental characteristics along walking routes to 
school (reference group is shortest network routes)

Odds ratio 95% CI for OR

Lower Upper

Length (m) 1.00 1.00 1.00

Blue space (%) 1.15 1.07 1.24

Traffic light (n) 1.46 1.11 1.92

Main road (%) 0.91 0.89 0.93

Residential road (%) 0.88 0.86 0.90

Footpath (%) 0.87 0.85 0.89

Minor road (%) 0.91 0.88 0.93

Food outlets (n) 0.92 0.83 0.98

Table 5 Conditional logistic regression results 
for  environmental characteristics along  walking routes 
home (reference group is shortest network routes)

Odds ratio 95% CI for OR

Lower Upper

Length (m) 1.00 1.00 1.00

Blue space (%) 1.09 1.03 1.17

Traffic light (n) 1.77 1.33 2.37

Main road (%) 0.92 0.90 0.94

Residential road (%) 0.90 0.87 0.91

Footpath (%) 0.89 0.87 0.91

Minor road (%) 0.91 0.88 0.94

Food outlets (n) 0.90 0.84 0.96
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roads was significantly less for GPS routes compared 
with the SNR. The GPS walking routes home had a mean 
value of 5 outlets which was 10% less than the SNR (OR 
0.90, 95% CI 0.84, 0.96).

Weighted network routes to school and home from school
Weighted network
Table 6 reports the cost values that were assigned to the 
road network. Cost values were informed by the OR of 
the conditional logistic. Network vertices that had traffic 
lights or outlets along them were reassigned the imped-
ance value set for traffic lights and outlets, as road type 
impedance values were assigned first. For example, a ver-
tex representing a main road that contained traffic lights 
was reassigned a value of 0.5. If the vertex was within 
25 m of a food outlet, the vertex was reassigned a value 
of 0.8. Figure  2 visualises how this has modified route 
modelling.

Route to school
Median intersection between GIS-generated routes and 
GPS routes was greater for the WNR than for the SNR. 
On average, 53% of WNR intersected with GPS-routes 
(Table 7) compared with 18% of shortest network routes. 
One in four WNR completely intersected with the cor-
responding GPS routes compared with 1.6% of SNR to 
school. For routes less than 3 km long, 28% of WNR inter-
sected completely with the corresponding GPS routes.

For SNR, 7% of routes to school intersected completely 
with GPS routes shorter than 1  km compared with 
43% of the WNR to school. Route intersection of WNR 
decreased for route lengths greater than 4  km (n = 10 
routes). Distribution of WNR intersection was negatively 

skewed (skew = 0.02) (Fig. 3) and SNR intersections were 
positively skewed.

Route home from school
Median intersection between the GPS routes and GIS 
generated routes was 100% for the WNR and 8% for 
SNR. Mean percentage of intersection decreases as route 
length increases. More than half of WNRs (56%) com-
pletely intersected with the corresponding GPS routes 
(Table  8) compared with 1.84% of shortest network 
routes. Median intersection between WNR, SNR and 
GPS routes was 91% and 18% respectively. For SNR less 
than 1  km long, 7% routes completely intersected with 
the GPS recorded routes. The positively skewed distri-
bution for SNR intersections highlighted that the inter-
section rates were poorer and much less frequent than 
WNR.

Multilevel regression model
The WNE, both along routes to school and along routes 
home, were positively associated with exposure to the 
RFE calculated from the GPS routes (p < 0.001). The 
regression coefficients and standard error (SE) are shown 
in Table 9.

Discussion
Main findings
This paper describes a novel method to model walking 
routes to school and home on a large scale with a known 
accuracy. Our method calculated walking commutes with 
more than three times greater accuracy than shortest 
network routes for the route to school and more than 12 
times greater accuracy for the route home. We focussed 

Table 6 Cost values assigned to each vertices

Main road Residential road Footpath Minor road Traffic lights Outlet

To school 0.8 0.5 0.8 1.5 0.5 0.8

Home from school 0.8 0.4 0.8 1.2 0.7 0.5

Table 7 Summary of SNR and WNR overlap with GPS routes for walking routes to school 

Mean SD Median Min Max Range

GPS route length (km) 1.55 0.88 1.41 0.07 5.18 5.12

SNR length (m) 3.14 1.84 2.79 0.16 14.03 13.86

SNR intersect distance (m) 0.18 0.21 0.11 0 1.65 1.65

SNR intersect with GPS (%) 18 23 8 0 100 100

WNR length (m) 1.68 0.83 1.64 0.15 4.40 4.25

WNR intersect with GPS distance (m) 0.77 0.69 0.57 0.09 3.36 3.35

WNR intersect with GPS (%) 53 39 44 0 100 100
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on walking routes as walkers are the most challenging to 
model and currently, GIS methods used to model walk-
ing commutes that contribute to daily mobility measures 
are inadequate. Our method highlights the accuracy of 
large-scale GIS-modelled daily mobility measures can 
be greatly improved by using GPS data to inform GIS 
methods. It is possible to apply this method to differ-
ent subgroups of the population to reflect how they may 

commute and to model different environments that com-
pose daily mobility such as hobbies or weekends.

Analysing GPS-derived walking routes allowed 
understanding of which built-environment character-
istics are associated with route choice along walking 
commutes to school and home from school. Measuring 
built-environment features along walking routes sug-
gests that blue space, traffic light count, food outlets 

Fig. 3 Distribution of intersection between shortest network routes and weighted network routes with GPS route for routes to school (am) and 
routes home from school (pm)

Table 8 Summary of SNR and WNR overlap with GPS routes for walking routes home 

Mean SD Median Min Max Range

GPS route length (m) 1.51 0.91 1.37 0.10 7.17 7.07

SNR length (m) 3.14 1.87 2.80 0.30 14.03 13.73

SNR intersect distance (m) 0.18 0.21 0.10 0 1.65 1.65

SNR intersect with GPS (%) 18 23 8 0 100 100

WNR length (m) 1.71 0.87 1.58 0.15 6.92 6.76

WNR intersect with GPS distance (m) 1.46 0.74 1.40 0.11 4.07 3.96

WNR intersect with GPS (%) 91 17 100 10 100 90
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and road type are important built-environment factors 
in child walking routes to school and home from school. 
Our study supports findings that children use cross-
ings with traffic lights when available and avoid walking 
along main roads [11]. Traffic lights are usually placed 
for pedestrians to safely cross the road and so children 
may choose to travel via traffic lights when they are tra-
versing main roads in order to safely cross. Children 
prefer to traverse residential streets and along foot-
paths which may explain why accidents were not asso-
ciated with route choice since accidents tend to occur 
on busier roads.

The difference between built-environment character-
istics along SNR and GPS routes was greatest for the 
walk home. This is consistent with evidence reported 
elsewhere [41] and highlights that built-environment 
features have a greater impact on child route choice 
on the way home. On the walk to school, there is a time 
constraint whereas on the route home, without time 
pressure, children may be more influenced by the built-
environment e.g. walking home via the park or a food 
outlet.

The number of food outlets was significantly less 
along GPS routes when compared with SNR. This sup-
ports the findings by Harrison et al. [8] that SNR over-
expose children to the food environment. Furthermore, 
Dessing et al. [11] and Harrison et al. [8] found that the 
shortest network distance was a suitable proxy for the 
distance that a child travels. Our results support this 
finding for routes to school and routes home. Children 
generally traverse a short route on their commute to 
and from school but their route choice is not necessar-
ily determined by choosing the absolute shortest route. 
Often, the shortest network route would be along main 
roads and our results suggest that children avoided 
walking along the busiest roads.

Woodland was not significantly associated with route 
choice, either to or from school but previous research 
suggested children may avoid wooded areas because 
they are perceived to be unsafe [42, 43]. However, the 

research that reported children may avoid wooded 
areas was based on interviews with parents. The lack of 
significant association suggests that woodland is not an 
important factor for children deciding which route they 
chose to take.

Modifying the shortest route calculation by using a 
weighted network to generate walking routes and the 
associated exposures greatly improved the accuracy 
of GIS-modelled routes and exposures. By consider-
ing built-environment features that are associated with 
route choice when modelling walking routes to school 
and home, the intersection between modelled routes 
and GPS routes was greatly improved, particularly for 
routes home. Furthermore, exposure to the food environ-
ment was significantly associated with exposures calcu-
lated from GPS data for both route to school exposures 
and route home exposures. To our knowledge, this has 
not been documented before. Previous studies have sug-
gested that GPS data should be collected for accurate 
measures of environmental exposures, but we show that 
GIS-modelled routes and exposures can be obtained with 
a known accuracy and used for large-scale studies popu-
lation level studies instead of small samples of people 
who have consented to wear devices.

Strengths
This study contributes to measuring population-level 
daily-mobility for individuals by providing a method to 
generate walking routes to and from school with known 
accuracy. The method differentiates between the walk to 
school and the walk home which, to our knowledge, has 
not be documented before in GIS-modelled daily mobil-
ity measures. The methods presented here can be used to 
produce dynamic GIS-generated population-level expo-
sures which is important, particularly in public health 
research, where the results of population-level research 
contribute to the evidence base that policymakers draw 
from.

This method has the potential to be adapted for dif-
ferent subgroups of the population and aspects of daily 
mobility. For example, different modes of transport and 
calculating exposures to other built-environment meas-
ures such as pollution and green space.

Limitations
The method presented in this paper calculates one route 
per child for the walk to school and one route for the 
walk home. We assumed that children walked the same 
route each day and defined a walking routes as directly 
to school and home. However, children may not walk 
the same route every day. For example, children may 
commute via a friend’s home or they may not live in just 
one home, but two, and so have different start and end 

Table 9 Multilevel regression model

a Weighted network exposures (WNE) to the RFE defined as the number of food 
outlets within 100 m of the weighted network route

Fixed effect Value SE t‑value p‑value

Route to school

 Intercept 0.81 1.17 0.48 0.63

 WNEa 1.42 0.07 19.43 < 0.001

Route home from school

 Intercept 0.66 0.34 1.95 0.05

 WNE 1.15 0.04 25.65 < 0.001
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locations. However, as this is a population-level model, 
this is a reasonable assumption to make and the majority 
of route scenarios have likely been captured.

Future work
Further work should explore the cost values of the net-
work and the routing algorithm that is used in the cur-
rent model. This model uses the Dijkstra’s algorithm and 
a weighted network to generate routes that represent 
walking routes to and from school. The Dijkstra algo-
rithm was the only network routing algorithm explored 
in this investigation. However, other shortest network 
routing algorithms such as A* algorithm K-shortest path 
could be used to reduce computing time in larger data-
sets. Furthermore, travel time should be explored in 
future work.

Walking routes home were more closely associated 
with the GPS data than routes to school. The cost values 
applied to the network were informed by the results of 
two logistic regression models (route to school and route 
home) but further investigation is needed to explore 
whether the cost values assigned to the walking routes 
home are more appropriate than the cost assigned for 
routes to school. The route intersection was far greater 
between the GPS data and the WNR than the intersec-
tion between the GPS data and the shortest network 
routes to school; and the exposures along the route to 
school generated from the weighted network were sig-
nificantly associated with the GPS exposures. However, 
we did not explore whether the cost values applied to 
the network are the optimum cost values for modelling 
children’s walking routes to and from school. Future work 
could explore: (i) optimum network cost values through 
the application of more complex machine learning prin-
ciples (ii) whether factors that influence route choice dif-
fer between children who live in urban areas and rural 
areas.

Implications
This study demonstrates that GIS can be used to generate 
population-level exposures with known accuracy. Gen-
erating routes using a shortest network algorithm and a 
cost weighted street network has produced exposures to 
food outlets that are significantly associated with expo-
sures calculated from GPS data. These results support the 
concept that GIS routing models can reliably emulate real 
life behaviours at a population-level. Large scale, popula-
tion-level research is an important aspect of the evidence 
base that policy makers use. Generating children’s expo-
sure to the RFE along their routes to and from school will 
be a powerful tool for researchers and policy makers as 
they attempt to combat increasing obesity rates.

This model has been developed using GPS data from a 
previously funded UK study [28]. The GPS data was rep-
resentative of a large geographic area that covered urban 
and rural areas. The model could therefore be applied, to 
school children around the UK. Children that live in rural 
areas tend to live further away from the school that they 
attend and are more likely to drive or use public trans-
port to commute to school. For children who live within 
4800 m of the school that they attend, this model is reli-
able across urban and rural regions in the UK. However, 
it should be acknowledged that fewer children in rural 
regions actively travel to school [44]. This supports the 
need to develop exposure models for other methods of 
transport and multi-modal transport opportunities. Fur-
thermore, this methodology can be applied elsewhere 
in the world; by calculating built-environment charac-
teristics that are associated with route choice; use these 
results to inform the cost values on the network; produce 
routes from weighted network and associated exposures.

GPS data is often used as the ‘gold standard’ for rep-
resenting ‘real-life’ behaviour and is a valuable resource 
for researchers but it is also important to develop alterna-
tive GIS methods that can be used for population-scale 
research because it is not possible to collect GPS data on 
a large scale. Other GIS generated exposures have pre-
viously been modelled and linked with health data for 
population-level analysis [45, 46] and provide important 
contextual data to health records. Undertaking large-
scale research studies means that generalizable results 
are added to the evidence base and these can be used to 
inform policy and population-level interventions. Both 
of which are vital in driving large scale reductions in the 
prevalence of health conditions that affect large numbers 
of people such as obesity [47].

Conclusions
Numerous studies have investigated factors and behav-
iours associated with active travel [48–51], but few stud-
ies have characterised built-environment features along 
walking routes to school and home. Built-environment 
factors associated with child walking routes to and from 
school were length, traffic light count, number of food 
outlets and road type. These characteristics were used to 
inform costs along a network to predict children walk-
ing to and from school using GIS. This work presents 
a method to model child walking routes to school and 
home with known accuracy. This is a novel methodology 
that provides large potential for developing the model to 
account for other modes of commuting or other aspects 
of daily mobility for different subgroups of the popula-
tion. Ultimately, the method presented here could be 
used in research to provide population-level evidence 
to advise policy makers and provide evidence to target 
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public health interventions at people who are most likely 
to achieve active travel to school and work [52].
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