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METHODOLOGY

A bootstrapping approach for generating 
an inverse distance weight matrix 
when multiple observations have an identical 
location in large health surveys
Sung Wook Kim1*  , Felix Achana1 and Stavros Petrou1,2

Abstract 

Spatial weight matrices play a key role in econometrics to capture spatial effects. However, these constructs are prone 
to clustering and can be challenging to analyse in common statistical packages such as STATA. Multiple observations 
of survey participants in the same location (or cluster) have traditionally not been dealt with appropriately by statisti-
cal packages. It is common that participants are assigned Geographic Information System (GIS) data at a regional or 
district level rather than at a small area level. For example, the Demographic Health Survey (DHS) generates GIS data 
at a cluster level, such as a regional or district level, rather than providing coordinates for each participant. Moreover, 
current statistical packages are not suitable for estimating large matrices such as 20,000 × 20,000 (reflective of data 
within large health surveys) since the statistical package limits the N to a smaller number. In addition, in many cases, 
GIS information is offered at an aggregated level of geographical areas. To alleviate this problem, this paper proposes 
a bootstrap approach that generates an inverse distance spatial weight matrix for application in econometric analy-
ses of health survey data. The new approach is illustrated using DHS data on uptake of HIV testing in low and middle 
income countries.
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Introduction
Spatial weight matrices play an important role in econo-
metrics to capture spatial effects [1]. These matrices are 
used to generate spatial lag variables and spatial error 
models [2]. Unfortunately, however, Geographic Infor-
mation System (GIS) data are commonly provided at an 
aggregated geographic level in many national and inter-
national health surveys. In other words, participants are 
generally assigned a GIS location at a regional or district 
rather than small area level.

It is a common procedure that data surveyors attempt 
to aggregate collected data at a higher level in order to 
conceal the identity of survey participants. In terms of 

spatial data, one way of hiding the identity of participants 
is to aggregate individual-level to a higher level such as 
region or cluster [3]. The Demographic and Health Sur-
vey (DHS) data uses the aggregation approach to pro-
tect respondents’ confidentiality. As another example, 
UNICEF’s Multiple Indicator Cluster Survey (MICS) col-
lects cluster level data but only reports the regional level, 
which is a higher level of data [3]. In addition to these 
examples, the Centres for Disease Control and Protection 
(CDC) and US Census Bureau also apply an aggregation 
approach in their health surveys [3].

Given this issue, the following analytical challenges 
can arise. Generating spatial weight matrices based on 
distance using multiple observations of survey partici-
pants in the same area, such as households located in an 
identical location (or cluster), is not currently possible. 
This is mainly because multiple observations in the same 
location have identical information regarding longitude 
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and latitude, so the distances between the observations 
become zero. Spatial regression assumes that every 
observation has unique location information. As such, a 
spatial weight matrix based on distance such as k-near-
est neighbour or inverse distance cannot be generated in 
analyses using these data.

Moreover, it may not be possible to generate a spatial 
weight matrix since commonly used statistical packages 
have limitations in estimating a large size matrix. For 
example, the STATA statistical package limits the num-
ber of N to 11,000. Consequently, statistical packages that 
calculate spatial weight matrices such as ‘SPMAT’ [4] and 
‘spwmatrix’ [5] do not function for datasets that exceed 
N = 11,000. Likewise, the limit of vectors that can be 
used within the R package is 2,147,483,647; however, this 
is not suitable for a 4 GB memory computer and inevi-
tably requires additional memory [6]. One alternative is 
to use a special matrix language such as ‘Mata’ in STATA 
because Mata has no limits in calculating the matrix [7]; 
however, it can be burdensome for researchers to learn 
another statistical language. In practice, analyses of many 
national and international health survey datasets face 
both of these methodological challenges, and the exist-
ing literatures does not suggest a way of alleviating these 
challenges [8–10].

This study therefore presents a novel bootstrap-based 
method approach for generating an inverse distance 
weight matrix when multiple observations have an iden-
tical location in large health surveys.

Methods
Spatial weight matrix
A spatial weight matrix is used to represent the spatial 
structure within a dataset. The spatial weight matrix, W, 
is an n x n non negative matrix that has an element of 
Wij , which is the weight at each location i, j. There are a 
number of approaches to generate a spatial weight matrix 
[10]. Amongst them, the spatial inverse distance weight 
matrix is a popular method as it is relatively simple to 
calculate the weights [8]. The spatial inverse distance 
weight matrix can be expressed as

In general, a spatial lag model is expressed as:

where ρ is a coefficient for a spatial lag variable y is a 
n × 1 vector of the dependent variable, W is a n × n spa-
tial weights matrix, e is a vector of error terms, and β is 
a vector of regression coefficients [10]. The concepts of 

(1)Wij =

{

1
dαij

if i �= j

0 if i = j
.

(2)y = ρWy+ Xβ + ε

Moran’s I and the bootstrap method are explained in 
Appendix.

The reliability of simulation
The reliability of a simulation can be confirmed by esti-
mating the following concepts: coverage probability and 
mean squared error (MSE) [11, 12]. Coverage probabil-
ity represents the probability that the confidence interval 
contains the true value of the variable of interest. In gen-
eral, approximately 95% probability of coverage is said to 
be reliable [13]. The accuracy of the simulation can also 
be checked using MSE statistics [14]:

where N is the total number of observations and β is a 
true value of the parameter. β̂ is the value of the boot-
strap simulation. It is desirable to have a MSE value close 
to zero [13].

Basic idea of the model
This study focuses on the following comparison. An 
inverse distance weight matrix was generated without 
random sampling using original DHS data. Distance was 
defined as Euclidean distance [15]. To avoid the technical 
errors derived from the insufficient memory, an inverse 
distance weight matrix was generated with Mata language 
using STATA [7]. Furthermore, another inverse distance 
weight matrix based on random sampling was generated 
in order to compare the result with the matrix generated 
using the Mata language. To do so, 10,000 bootstraps 
were performed, selecting one observation from one clus-
ter; that is, a total of 850 observations were used to gener-
ate the spatial weight matrix using the bootstrap method 
within the SPMAT package [4]. A bootstrap method was 
carried out with ‘bsample’ and ‘simulate’ commands in 
STATA [16]. This random sampling can avoid the prob-
lem that the denominator in Eq.  (1) becomes zero as 
a result of multiple observations being given identical 
coordinates. Regardless of the number of iterations, this 
matrix will be constant because a random sample drawn 
from each of the clusters offers identical distance, given 
the constant distance between clusters. A spatial probit 
model [17, 18] was also considered as the outcome vari-
able in our applied example is a binary variable.

Based on the literature about the association between 
spatial access to HIV care [20–22] and education [20] 
and income [19–22], the spatial lag model used in this 
study is as follows.

MSE = 1/N
∑

j

(β̂j − β)2

HIV testing = ρW ∗HIV testing + β1 ∗ income

+ β2 ∗ education+ ε.
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Sensitivity analysis
An alternative dependent variable (visiting any type 
of health services over the last 12  months) was also 
selected because it showed a higher value of Moran’s I 
(0.009 for women and 0.01 for men) than that for the 
variable of ‘HIV testing’ in the study dataset. Based 
on the existing literature [20, 23, 24], a model of using 
‘visiting health services’ as a dependent variable, and 
wealth and education as independent variables was also 
considered.

Data
DHS data for Malawi was used for this study. This sur-
vey provides nationally representative data for several 
developing countries with respect to socioeconomic sta-
tus such as wealth, as well as clinical information such as 
mode of delivery and HIV testing [25]. The DHS collects 
GIS data at a cluster level rather than providing coordi-
nates for each observation of a participant. As an exam-
ple, DHS Malawi 2015–2016 offers only 850 cluster level 
GIS values for approximately 24,000 participants. The 
focus of this study is on HIV test uptake, which is defined 

Table 1  Moran’s I statistics

Women Men

Moran’s I Standard 
deviation

P-value Moran’s I Standard 
deviation

P-value

Original data 0.004 0.001 0.000 Original 0.003 0.0003 0.000

10,000 iteration 0.002 0.005 0.267 10,000 iteration 0.002 0.006 0.260

Table 2  OLS regression (HIV testing)

MSE mean squared error
a  Row normalised
b  This was estimated using spmat and spreg package in Stata

Coefb SE CI (lower) CI (higher) Coverage probability 
(%)

MSE

Women

 Original dataa

  Spatial lag 1.159 0.226 0.716 1.603

  Wealth 0.003 0.003 − 0.003 0.010

  Education 0.008 0.007 − 0.007 0.022

 5000 simulation

  Wealth 0.008 0.009 − 0.010 0.026 94.5 0.0001

  Education 0.011 0.018 − 0.025 0.046 97.8 0.0003

 10,000 simulation

  Wealth 0.008 0.009 − 0.010 0.026 95.0 0.0001

  Education 0.011 0.018 − 0.024 0.046 97.9 0.0003

Men

 Original dataa

  Spatial lag 1.337 0.171 1.001 1.672

  Wealth − 0.011 0.002 − 0.016 − 0.007

  Education 0.018 0.005 0.009 0.027

  _cons − 0.270 0.144 − 0.552 0.013

 5000 simulation

  Wealth − 0.010 0.009 − 0.029 0.009 95.1 0.0003

  Education 0.019 0.019 − 0.019 0.056 96.6 0.0005

 10,000 simulation

  Wealth − 0.010 0.009 − 0.028 0.008 95.6 0.0001

  Education 0.019 0.019 − 0.019 0.056 97.0 0.0004
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as ‘ever tested for HIV’. This data was obtained from 
women and men age 15–49 years and covers the lifetime 
of the respondent [26].

Results
A descriptive table of data used in this study is provided in 
Appendix. The analysed dataset includes 7289 women and 
17,273 men. Both samples were drawn from 850 clusters.

Moran’s I
Table  1 shows results for Moran’s I statistic. The statis-
tic for Moran’s I is close to zero, suggesting that spatial 
autocorrelation in this study was weak. Nevertheless, the 
p-values for the Moran’s I statistic are significant for both 
women and men (p < 0.001). The bootstrap simulation 
result shows a small difference from the original result. 
For women, the Moran’s I statistics based on the origi-
nal data and 10,000 bootstrap iterations were 0.004 and 
0.002, respectively. Similarly, Moran’s I statistics for men 
were 0.003 and 0.002, respectively. The sign for the coeffi-
cients for the simulated results is identical to that for the 
original data and the result provides a small bias. These 
results suggest that the bootstrapping simulation offers 

close results to those based on the original data despite 
the weak spatial autocorrelation.

Regression results
Table 2 presents the regression results using the original 
data and using bootstrap simulations. The reliability of the 
bootstrapped results is checked using coverage probabili-
ties and mean squared errors [11]. For women and men, 
as an example, the coverage probabilities following 5000 
iterations of the wealth variable were 95.3% and 95.1%, 
respectively. In the same manner, the coverage probabili-
ties for the wealth variable following 10,000 bootstrap 
simulations were 95.0% and to 95.6%, respectively.

MSE values obtained by bootstrapping were close to 
zero. The MSEs following both 5000 and 10,000 itera-
tions for men were 0.0001 (wealth) and 0.0004 (educa-
tion), respectively. Likewise, the MSEs for the wealth and 
education variables for women were 0.0001 and 0.0003, 
respectively. One recommended approach for using the 
confidence interval is to check the reliability of simulation 
results [12]. Although it is not possible to accurately esti-
mate this parameter as the confidence interval changes 
from a negative to a positive sign, the values of the 

Table 3  Spatial probit (HIV testing)

Coef SE CI (lower) CI (higher)

Women

 splag 4.371 0.865 2.676 6.067

 Wealth 0.013 0.013 − 0.013 0.040

 Education 0.033 0.029 − 0.023 0.090

Coef SE Boot CI (lower) Boot CI (higher) Coverage probability 
(%)

MSE

5000 simulation

 Wealth 0.035 0.035345 − 0.035 0.104 94.1 0.002

 Education 0.051 0.073127 − 0.092 0.194 97.6 0.006

10,000 simulation

 Wealth 0.034 0.035677 − 0.036 0.104 94.4 0.002

 Education 0.051 0.074628 − 0.095 0.198 97.3 0.006

Coef SE CI (lower) CI (higher) Coverage probability 
(%)

MSE

Men

 splag 5.506 0.709 4.117 6.895

 Wealth − 0.048 0.009 − 0.066 0.030

 Education 0.079 0.020 0.040 0.118

 _cons − 3.570 0.597 − 4.741 − 2.400

5000 simulation

 Wealth − 0.040 0.040929 − 0.120 0.040 94.8 0.002

 Education 0.086 0.085585 − 0.082 0.254 96.4 0.007

10,000 simulation

 Wealth − 0.040 0.041274 − 0.121 0.041 94.7 0.002

 Education 0.087 0.084701 − 0.079 0.253 96.5 0.007
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regression coefficients from the original data fall into the 
bootstrapped confidence interval of the simulated data.

Table  3 presents the regression results using a spatial 
probit model. It can be seen that there is no difference 
between 5000 iterations and 10,000 iterations in terms of 
the magnitude of coefficients. The coefficient values are 
contained in the bootstrap confidence intervals (− 0.036 
to 0.104 for the wealth variable following 10,000 iterations; 
and − 0.095 to 0.198 for the education variable following 
10,000 iterations). Moreover, the coverage probabilities 
are close to 95%. For men, the independent variables show 
a similar pattern. The coefficient values are close to the 
true values (− 0.048 vs − 0.040 for wealth; 0.079 vs 0.087 
for education) and contained in the bootstrap confidence 
intervals. Again, the coverage probability varies from 94.7 
to 96.5%. To sum up, the simulation results are predictive 
of true values generated from the original data.

Sensitivity analysis
A sensitivity analysis was performed using another 
dependent variable (visiting health services) that had 
a higher Moran’s I values, namely 0.009 for women and 
0.01 for men. The simulated results are similar to the esti-
mated values of the coefficients of the regression. The 
coverage probabilities were 95.4% and 96.6% for wealth 
and education, respectively. In Table 4, for men and fol-
lowing 10,000 iterations, the values (− 0.012 for wealth 
and 0.019 for education) were also contained within 
the bootstrap confidence intervals (− 0.038 to 0.011 for 
wealth and − 0.035 to 0.072 for education). Again, in 
Table 5, the values (− 0.031 for wealth and 0.053 for edu-
cation) fall into the bootstrap confidence intervals. The 
MSEs were close to zero. In brief, the results of this sen-
sitivity analysis were consistent with the simulated results 
that used HIV test uptake as the dependent variable.

Table 4  Sensitivity analysis—OLS (health service use)

a  Row normalised

Coef SE CI (lower) CI (higher)

Women

 Original dataa

  Spatial lag 1.645 0.159 1.333 1.956

  Wealth − 0.012 0.004 − 0.020 − 0.003

  Education 0.029 0.009 0.011 0.048

  Constant − 0.382 0.094 − 0.566 − 0.198

Coef SE Boot CI (lower) Boot CI (higher) Coverage probability 
(%)

MSE

5000 simulation

 Wealth − 0.007 0.012 − 0.030 0.017 95.4 0.000169

 Education 0.024 0.025 − 0.025 0.074 96.5 0.000659

10,000 simulation

 Wealth − 0.007 0.012 − 0.030 0.016 95.4 0.000166

 Education 0.025 0.025 − 0.024 0.075 96.6 0.000651

Coef SE CI (lower) CI (higher)

Men

 Original dataa

  Spatial lag − 0.053 0.045 − 0.142 0.036

  Wealth − 0.012 0.003 − 0.018 − 0.006

  Education 0.019 0.006 0.007 0.032

  Constant 0.712 0.052 0.611 0.813

Coef SE Boot CI (lower) Boot CI (higher) Coverage probability 
(%)

MSE

5000 simulation

 Wealth − 0.014 0.013 − 0.039 0.011 95.3 0.000165

 Education 0.019 0.028 − 0.036 0.073 95.2 0.000773

10,000 simulation

 Wealth − 0.014 0.013 − 0.038 0.011 95.4 0.000161

 Education 0.018 0.027 − 0.035 0.072 95.8 0.000752
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Discussion
This study applies a bootstrap method to generate an 
inverse distance weight matrix in the context of a large 
health survey with multiple observations in identi-
cal geographical locations. A number of global health 
surveys use the aggregation approach to protect par-
ticipants’ identity, so this prohibits researchers from 
generating distance based spatial weight matrices. This 
paper attempts to resolve this problem by introducing 
a bootstrapping method in generating inverse distance 
spatial weight matrices. Spatial regression using a matrix 
programming language, Mata, was carried out and the 
result was compared with the result of spatial regres-
sion based on bootstrapping. The results following use of 
the bootstrap were consistent with the results that used 
the original data, and coverage probabilities support the 
bootstrap results provided in this study.

A few limitations need to be noted. Firstly, it was not 
possible to identify a variable of higher Moran’s I value. 
It is possible that due to the small Moran’s I value, the 
spatial lag variable does not sufficiently capture the spa-
tial effect. Consequently, because of the small spatial 
effect captured by the spatial lag variable, the coefficients 
for the independent variables will not vary considerably. 
However, the sensitivity analyses generated consistent 
results with those using HIV test uptake as the depend-
ent variable even when Moran’s I values increased by 
ten times for men and two times for women. Secondly, 
the suggested approach was applied only to a spatial lag 
model with a binary variable. It is not certain whether 
consistent results can be obtained for multiple choice 
models such as the ordered choice model. Despite these 
limitations, the advantage of using the bootstrap method 
approach for generating an inverse distance weight 

Table 5  Sensitivity analysis—spatial probit model (health service use)

a  Row normalised

Coef SE CI (lower) CI (higher)

Women

 Original dataa

  splag 4.310 0.420 3.486 5.134

  Wealth − 0.030 0.011 − 0.052 − 0.008

  Education 0.076 0.024 0.028 0.124

  _cons − 2.319 0.248 − 2.805 − 1.832

Coef SE Boot CI (lower) Boot CI (higher) Coverage probability 
(%)

MSE

5000 simulation

 Wealth − 0.012 0.029 − 0.070 0.045 94.6 0.001

 Education 0.068 0.065 − 0.060 0.195 97.0 0.004

10,000 simulation

 Wealth − 0.012 0.030 − 0.071 0.047 94.4 0.001

 Education 0.066 0.065 − 0.061 0.193 96.8 0.004

Coef SE CI (lower) CI (higher)

Men

 Original dataa

  splag 5.419 0.291 4.848 5.990

  Wealth − 0.031 0.008 − 0.046 − 0.016

  Education 0.053 0.017 0.020 0.086

  _cons − 3.050 0.187 − 3.417 − 2.683

Coef SE Boot CI (lower) Boot CI (higher) Coverage probability 
(%)

MSE

5000 simulation

 Wealth − 0.032 0.033 − 0.097 0.032 96.2 0.001

 Education 0.057 0.073 − 0.086 0.199 95.7 0.005

10,000 simulation

 Wealth − 0.032 0.033 − 0.096 0.032 96.3 0.001

 Education 0.057 0.074 − 0.088 0.201 95.7 0.005
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matrix is that it is able to simplify the calculation of the 
spatial weight matrix regardless of the size of a matrix.

In conclusion, this study suggests a simplified approach 
to generating inverse distance weight matrices for spatial 
analyses. This methodological approach is likely to be of 
practical value when big data issues or duplicated GIS 
information arise.
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Appendix

•	 Moran’s I

Moran’s I is a widely used measure to detect spatial 
autocorrelation. This index ranges from − 1 to + 1. A 
negative outcome means that there is negative spatial 
autocorrelation; likewise, a positive outcome means that 
there is positive spatial autocorrelation.

where N is the total number of observations, X̄ is the 
mean of the variable, Xi is the value of the variable at the 
location i, Xj is the variable at the location j and W is the 
spatial weight index.

•	 Bootstrap method

The bootstrap method was introduced by Efron [27]. 
{

y1, y2, y3, . . . , yn
}

 denotes the outcome of the random 
sample to obtain the estimator [28]. This sample is 
regarded as the population and a random sample of N 
is drawn from 

{

y1, y2, y3, . . . , yn
}

 . If we draw a random 
sample from the sample, 

{

y
(t)
1 , y

(t)
2 , y

(t)
3 , . . . , y

(t)
n

}

 denotes 
the randomly drawn sample. The M-estimator is used 
to minimise the sum of functions of the data. θ̂ (t) , can 
be obtained by solving the following.

We iterate the process N times and get θ̂ (t) , which can 
be used for simulation [28]. An important feature of the 
bootstrap method is that resampling should be carried out 
with replacement [16, 28, 29]. In other words, this means 
that in the simulated data, some observations may occur 
more than once whereas others will not occur at all.

I =
N

∑n
i=1

∑n
j=1Wij

(

Xi − X̄
)(

Xj − X̄
)

∑n
i=1

∑n
j=1Wij

(

Xj − X̄
)2

min
θ∈Θ

N
∑

i=1

q
(

y
(t)
i , θ

)

Appendix 1  Descriptive summary—data

Women Men

N Mean STD Chi-2 N Mean STD Chi-2

HIV testing 7,289 0.82 0.38 HIV testing 17,273 0.85 0.36

Wealth index 7,289 2.92 1.49 Wealth index 17,273 3.31 1.41

Education level 7,289 1.20 0.69 Education level 17,273 1.18 0.65

Yes No Yes No

N Percent N Percent N Percent N Percent

HIV testing 5,995 82.25 1,294 17.750 < 0.001a HIV testing 14,607 84.57 2,666 15.43 <0.001a

Wealth index Wealth index

 Poorest 1,497 20.54 326 4.47  Poorest 2,114 12.24 342 1.98

 Poorer 1,053 14.45 274 3.76  Poorer 2,666 15.43 436 2.52

 Middle 1,016 13.94 248 3.40  Middle 2,722 15.76 522 3.02
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Yes No Yes No

N Percent N Percent N Percent N Percent

 Richer 1,113 15.27 212 2.91  Richer 3,002 17.38 570 3.30

 Richest 1,316 18.05 234 3.21  Richest 4,103 23.75 796 4.61

5,995 82.25 1,294 17.75 < 0.001 14,607 84.57 2,666 15.43 0.011

Education level Education level

 No education 747 10.25 131 1.80  No education 1,635 9.47 266 1.54

 Primary 3,481 47.76 846 11.61  Primary 8,961 51.88 1,740 10.07

 Secondary 1,513 20.76 300 4.12  Secondary 3,611 20.91 637 3.69

 Higher 254 3.48 17 0.23 < 0.001  Higher 400 2.32 23 0.13 < 0.001

a  This was estimated using a one sample t-test
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