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Abstract 

Background: Detecting the variation of health indicators across similar areas or peer geographies is often useful 
if the spatial units are socially and economically meaningful, so that there is a degree of homogeneity in each unit. 
Indices are frequently constructed to generate summaries of socioeconomic status or other measures in geographic 
small areas. Larger areas may be built to be homogenous using regionalization algorithms. However, there are no 
explicit guidelines in the literature for the grouping of peer geographies based on measures such as area level socio-
economic indices. Moreover, the use of an index score becomes less meaningful as the size of an area increases. This 
paper introduces an easy to use statistical framework for the identification and classification of homogeneous areas. 
We propose the Homogeneity and Location indices to measure the concentration and central value respectively of an 
areas’ socioeconomic distribution. We also provide a transparent set of criteria that a researcher can follow to establish 
whether a set of proposed geographies are acceptably homogeneous or need further refining.

Results: We applied our framework to assess the socioeconomic homogeneity of the commonly used SA3 Australian 
census geography. These results showed that almost 60% of the SA3 census units are likely to be socioeconomically 
heterogeneous and hence inappropriate for presenting area level socioeconomic disadvantage. We also showed that 
the Location Index is a more robust descriptive measure of the distribution compared to other measures of central 
tendency. Finally, the methodology proposed was used to analyse the age-standardized variation of GP attenders in 
a metropolitan area. The results suggest that very high GP attenders (20+ visits) live in SA3s with the most socioeco-
nomic disadvantage. The findings revealed that households with low income and families with children and jobless 
parents are the major drivers for discerning disadvantaged communities.

Conclusion: Reporting indicators rates for geographies grouped according to similarity may be useful for the analy-
sis of geographic variation. The use of a framework for the identification of meaningful peer geographies would be 
beneficial to health planners and policy makers by providing realistic and valid peer group geographies.

Keywords: Homogeneity, Geographic variation, Socioeconomic, Peer groups, Reporting, Disadvantage, Gini index, 
Clustering, Census area data, Categorical variables
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Introduction and background
The selection of an appropriate geographic unit of analy-
sis is a key decision for the analysis and interpretation of 

geographic variation of health-related indicators [1, 2]. It 
is commonly agreed that the unwarranted variation is not 
associated with the spatial effects of the geographic unit 
[3], and detecting variation across geographic areas is 
often useful only if the units have similar characteristics. 
Therefore, it is important to define what it means for two 
geographic units to be comparable.
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Take for example indicators denoting the frequency of 
GP visits. In 2012–2013 there were 2.9 million (12.5%) 
Australians who were frequent GP attenders, with more 
than 12 GP visits per year. These individuals were more 
likely to be older and live in rural areas with the most 
socioeconomic disadvantage [4]. In terms of socioeco-
nomic status, very high GP attenders (20+ GP visits) 
were almost twice as likely as low GP attenders (1–3 
GP visits) to have lived in areas with the most socio-
economic disadvantage (29% compared to 16%). These 
demographic and socioeconomic differences accounts for 
almost one-fourth of the variation in Medicare spending 
across regions [4, 5], and are strongly correlated with the 
risk of hospitalization for ambulatory care sensitive con-
ditions [6, 7].

In order to adjust for these differences, standardization 
for age and socioeconomic status is routinely undertaken 
to eliminate legitimate or warranted variations [8]. How-
ever, these adjustments may not always be sufficient [9] 
and the analysis can be hampered by the fact that geo-
graphic units of analysis are heterogeneous along other 
dimensions that are associated with the indicator of 
interest.

One approach to reduce the heterogeneity of the study 
area, while preserving the meaningfulness of the units of 
analysis, is to adopt a census geography which includes 
spatial units which are socially and economically mean-
ingful so that there is a degree of homogeneity in each 
unit. The central idea behind this approach is that area 
effects on health have been observed to be stronger in 
more homogeneous areas [10, 11]. A high level of homo-
geneity among people and households within each area 
on a given area level index results in a strong relationship 
between that area level index and individual level indi-
ces [12, 13]. Thus, epidemiologists and geographers have 
argued that units with greater social homogeneity would 
be appropriate for studying the associations between unit 
characteristics and a given health indicator [14]. This 
property makes them suitable for interpreting variation 
across similar units.

Following this approach, it is possible to remove the 
spatial effect of the factors which might influence health 
by presenting and reporting the variation of an indica-
tor using geographic units that have similar character-
istics, better known as “peer groups” [15, 16]. Here the 
emphasis is not necessarily on the explanation of the 
variation, but rather on producing a reliable picture of 
the variation in health indicators across an area, allow-
ing for the variation in standard confounders such as 
age, gender and socioeconomic status. Rates are usually 
already adjusted for age and gender, leaving socioeco-
nomic status to be accounted for by a judicious choice of 
peer groups. Therefore, reporting indicators by similar 

socioeconomically graded areas of residence provides a 
useful way to analyse health care variation.

Due to the large number of variables that could be used 
to measure socioeconomic status in relation to health, a 
proxy is often chosen based on data availability. In the 
Australian context, the primary socioeconomic proxy 
measure used to report the variation of health indica-
tors by national departments and agencies is the Index 
of Relative Socioeconomic Disadvantage (IRSD), derived 
by the Australian Bureau of Statistics (ABS) from popula-
tion census data [17–19]. The IRSD scores each area by 
summarizing population attributes, such as low income, 
low education attainment, high unemployment, and jobs 
in relatively unskilled occupations. For example, an area 
could have a low score if there are (among other things) 
many households with low income, many people with 
poor qualifications or many people in unskilled occupa-
tions. For ease of interpretation, areas can be ranked by 
their IRSD score and are classified into groups (e.g. quin-
tiles or deciles) based on their rank.

In this context, one of the major challenges in choos-
ing a suitable geographic unit relates to an adequate com-
promise between having a unit large enough to get stable 
indicator rates and not blurring meaningful local varia-
tion [20], while preserving the homogeneous characteris-
tics of the residential population [21, 22].

Traditionally, government agencies use a variety of 
geographies to report various outcomes and indica-
tors. For example, the Census tracts in the US and the 
Lower Layer Super Output Areas (LSOAS) in the UK 
were designed with the intent of being homogenous 
along different socioeconomic variables. Census tracts 
were originally designed as being relatively homogene-
ous with respect to rent, occupation and education [23], 
and typically contain between 2500 and 8000 inhabitants 
[24]. Lower Layer Super Output Areas (LSOAS) were 
constructed out of Output Areas (OAS) and contain 
1000–3000 residents. They were designed to be socially 
homogeneous in terms of housing tenure and dwelling 
type [25]. The homogeneity measure used in the creation 
of the 2001 UK census OAS [26] was based on the intra-
area correlation introduced by Tranmer and Steel [27], 
which is defined for a single continuous or dichotomous 
variable, and will be discussed in more details later in this 
section.

In Australia, a common census geography used for 
reporting and mapping is the ABS generated Statistical 
Area Level 3 (SA3) [28, 29]. SA3s are designed to provide 
a regional breakdown of Australia and usually have a pop-
ulation of between 30,000 and 130,000 people. In major 
cities they represent the area serviced by a major trans-
port and commercial hub. In regional areas they repre-
sent the area serviced by regional cities with populations 
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of more than 20,000 people. In outer regional and remote 
areas, they represent areas which are widely recognized 
as having a distinct identity and have similar social and 
economic characteristics.

While widely used, the majority of SA3s across Aus-
tralia are in major cities, where the population com-
position is more likely to be heterogeneous within a 
geographic area. Therefore, these reporting units are 
often too large or diverse to produce representative sum-
mary statistics [30]. Smaller spatial units located within 
the SA3 may thus be misclassified leading to their being 
grouped into incompatible peer groups. This is a well-
known issue in area-based analysis [31] and commonly 
referred to as the Modifiable Areal Unit Problem [32]. 
The heterogeneity of the reporting unit may also lead to 
misinterpreting the variation of the phenomenon under 
study and produce misleading conclusions on health care 
performance analysis.

Therefore, using only an index score at a large geogra-
phy may oversimplify the reporting of an area’s relative 
socioeconomic disadvantage, and the comparison of vari-
ation across a peer group should be accompanied by an 
evaluation of the degree to which those geographic units 
in the peer group are internally homogeneous. For this 
reason, it is always recommended that the homogene-
ity of a given geography should be evaluated prior to any 
analysis [11, 21, 33].

Despite the relevance of this issue few researchers have 
attempted to assess the homogeneity of a geographic area 
using a socioeconomic index. An attempt was made by 
Flowerdew [34] to build a new zone system to be used for 
the publication of Scottish Neighbourhood Statistics. For 
data zone construction, social homogeneity was assessed 
using the Townsend index of deprivation [35] and calcu-
lated by subtracting the number of the decile containing 
the lowest score from the decile containing the highest 
score. This value, however, is clearly affected by outliers 
and therefore inappropriate for the classification of highly 
skewed distribution. Moreover, the author does not pro-
vide an operational definition of homogeneous area.

A different approach to the definition of homogene-
ous socioeconomic areas consists in considering the 
social and economic variables separately. Following this 
method, Steel and Tranmer proposed a homogeneity 
measure for the distribution of a multi-category variable, 
using data from the UK census [36]. This is a variance-
based measure, weighted to account for differences in the 
population size of units across the geographic area. This 
definition, however, is not helpful to measure the homo-
geneity of an ordinal measure such as a socioeconomic 
index: the index scores do not represent an amount of 
disadvantage and as such there is no meaningful arithme-
tic relationship between the values.

Another complexity in dealing with homogeneity of 
socioeconomic indices found in the literature is their 
abstract quality. It is often not clear, for example, what 
meaning to give to a “homogeneous area” in terms of the 
socioeconomic characteristics of that area. For instance, 
the norm is to consider that if a particular area has, on 
average, a greater proportion of people with a relevant 
measure of disadvantage then that area may be consid-
ered as disadvantaged. The choice of what proportion is 
an appropriate cut-off is difficult. For example, “having 
30% of residents or households classified as deprived has 
different implications for a district of 200,000 than for 
one of 20,000” [37]. Unlike absolute deprivation, which 
refers to a threshold of minimum necessity, such as low-
income cut-off, relative deprivation is a comparative 
measure. Therefore, direct comparisons of deprivation 
level are appropriate when the unit of analysis is designed 
to cover roughly equal-sized populations.

In this general setting, a range of summary measures 
are used to describe relative deprivation for higher-level 
geographies [38]. An example is the Extent measure of 
the Index of Multiple Deprivation [38]. This measure 
uses a weighted combination of the population that live 
in the three most deprived deciles of the distribution. 
This analytical approach is useful to compare disadvan-
taged areas, but it does not provide an operational defini-
tion of homogenous area.

For all these reasons, it is necessary to define homoge-
neity precisely, in order to determine how it should be 
operationalised and measured.

One approach to enhance the description of socioeco-
nomic disadvantage or any other indicator, is to use the 
distributional information of the units’ data within each 
area. This paper proposes a general framework to iden-
tify distributional properties of a set of data suitable for 
the presentation and reporting of comparable informa-
tion of geographic regions with peers. More precisely, 
we develop an Homogeneity Index (HI) and a Location 
Index (LI) with the purpose of measuring respectively 
the concentration and central tendency of a probability 
distribution.

In particular, we look at the population distribution 
in the SA3 IRSD decile category. Conceptually, the HI’s 
value of a distribution is a number between 0 and 1 that 
is defined as the degree to which the population is con-
centrated among the set of categories for that area. For 
example, in the case of the IRSD decile, an HI of zero 
expresses minimal concentration and occurs when the 
population is equally distributed among all decile cat-
egories (i.e. an IRSD decile contains 10% of the popula-
tion). Conversely, an HI value equal to 1 is attained if the 
whole population is concentrated in a single decile. In the 
latter case, there is no variation within the area in that 
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characteristic and the geography is uniquely identified by 
the central value of the distribution.

The LI of a distribution refers to the category which 
could be considered representative of the entire popu-
lation in a unit. For example, in the case of the IRSD 
deciles, an LI of one represents a very disadvantaged area 
while an LI of ten indicates an area with the lowest level 
of disadvantage. We propose to use the combination of LI 
and HI to identify peer groups of spatial units since the 
LI (or IRSD alone) is not sufficient for this purpose.

Finally, this approach allows us to facilitate the visu-
alization of multivariate data. It is difficult to visualize a 
large number of variables on thematic maps. Using our 
approach, individual features such as the incidence of 
health-related indicators in a specific geography and the 
characteristics of that area can be combined into a single 
dashboard with two indices.

In Fig.  1, we illustrate the proposed conceptual 
framework that could be useful for the evaluation of 
homogeneous areas in health geographic studies. The 
first decision is the selection of the larger geographic 
area (e.g. SA3) and its subunits (e.g. SA1: A smaller 
ABS geography). Then, the contextual dimension along 
which one wishes to measure the homogeneity of the 
geographic area must be defined (e.g. SEIFA, Socio-
Economic Indexes for Areas). Third, the selection of 
the variable used in the model must be specified since 

measuring the homogeneity among multiple unordered 
or multiple ordered categories of a variable needs a 
different set of measurement tools (e.g. IRSD decile). 
Finally, the selection of the statistical model used to 
represent the distributional characteristics of the area. 
We are interested in measuring and operationalising 
the distribution of a categorical ordinal variable such as 
the proportion of people in each decile category of the 
IRSD.

Therefore, we used the above-mentioned framework 
to answer the following questions:

1. Are the SA3s an appropriate geography for reporting 
health care variation by socioeconomic status?

2. How homogeneous are these units with regard to the 
IRSD?

3. Can we use a combination of HI and LI to better find 
homogenous geographies and therefore identify peer 
groups better?

This set of analyses uses SA3s to assess the homogene-
ity of a geographic area. However, the approach can be 
used to evaluate the socioeconomic homogeneity across 
any specified geographical boundaries. It is important to 
notice that the methodology does not require access to 
fine geographic scale data, and it is easily applied to any 
distribution of a categorical ordinal variable. Therefore, 

Fig. 1 Conceptual framework for the classification of homogeneous areas
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it requires only the distribution of the attributes for the 
larger area.

Our approach is founded on the general theory of 
probability distributions, and our aim is to provide a 
natural benchmark for a homogeneity measure in terms 
of what is a “high” (i.e. homogeneous) and “low” (i.e. het-
erogeneous) concentration of a probability distribution. 
Currently, there is no accepted benchmark that could be 
used to assess the homogeneity of a categorical ordinal 
variable. In this work, we show how the proposed statis-
tical indices can be used to investigate the diversity of a 
geographic area and determine when the unit of analy-
sis should not be used for reporting health outcomes by 
socioeconomic status.

The SA3s dataset and the data dictionary have been 
made available in the Additional file  1 and Additional 
file 2. The formal definitions and statistical properties of 
the HI and LI, discussed in the methods section, are illus-
trated in the Additional file 3. Finally, the Additional file 4 
includes the R script to develop these indices.

Methods
Different disciplines apply different indices to measure 
the statistical homogeneity or heterogeneity of a given 
data set. Many indices summarize the data into one num-
ber between zero (representing minimum homogeneity) 
and one (maximum homogeneity). Among these indices, 
measures of evenness are widely used [39].

Most common in the literature are concentration indi-
ces (CI) focusing on the measurement of dispersion 
among groups defined by nominal categorical variables 
[40], such as, for example, housing tenure or type, gender, 
religion and ethnicity [36]. Many social and economic var-
iables, however, are of ordinal nature. Examples include 
socioeconomic status, self-reported health status [41], 
level of access to primary care services [42] and remote-
ness classification [29]. Applying a nominal concentration 
measure to an ordinal variable is usually not appropriate 
and could generate misleading results. This issue has been 
addressed recently by many researchers [43–47], and an 
axiomatic theory for measuring dispersion of ordinal data 
has emerged [48]. This accumulating body of research, 
however, has been criticised for focusing more on meas-
uring polarisation rather than homogeneity [49, 50].

Therefore, there is a need for an alternative specifica-
tion of the concept of dispersion for ordinal variables. In 
the rest of the section we will develop an Homogeneity 
Index for ordinal categorical data based on the idea of 
combining a nominal concentration measure and a polar-
ized function into a single index, accounting for a num-
ber of desired properties. This index is a generalization 
of the Gini’s coefficient that incorporates the common 

properties of a polarised measure [48] and meets the 
basic expectation of a homogeneity measure. The index 
takes the value zero for the uniform distribution and the 
maximum value of one for the distribution concentrated 
in one category. Moreover, considering the structural 
properties of the index [48, 51], we provide additional cri-
teria for validating and comparing measures of homoge-
neity when the involved variables assume ordinal nature.

To our knowledge, in the statistical literature no opera-
tional suggestions were made regarding the definition of 
a generalized version of the Gini’s index for ordinal cat-
egorical data. The ones that have been proposed [52–54], 
lack the specificity needed to operationalize the classifi-
cation criteria. It is, therefore, important for the analyst 
to provide a set of simple and transparent classification 
criteria to assess the homogeneity of a geographic unit. 
Accordingly, we propose a possible framework to map 
the homogeneity values into the specifications space.

A key issue in the classification process, however, is to 
identify the basic parameters describing the distribution 
concentration of the attribute for that geographic area. 
As we have argued, we want a way of looking at the dis-
tributions that reflects both the evenness and the disper-
sion of an ordinal categorical variable. We will consider 
first the case of a nominal categorical variable.

Concentration index and true diversity
In this section we draw on the rich literature about diversity 
indices found in the field of ecology (see Jost [55] and refer-
ences therein), where diversity is to be understood as the 
opposite of homogeneity. Given a choice of Concentration 
Index, in order to really understand what a specific value 
mean and how it relates to the diversity of the distribution 
one could compare that value to the CI value of a distribu-
tion that can be easily visualized and interpreted. The most 
easily visualized distribution is one whose categories are 
equally abundant. It is easy to visualize what a distribution 
of, say, four equally abundant categories would be like. For 
instance, if the Gini’s index is chosen as a CI, then all dis-
tributions that share the value of the Gini’s index of four 
equally populated categories must have the same diversity. 
Finding the diversity of a distribution thus reduces to the 
problem of finding an equivalent distribution (one that has 
the same value of the index) composed of equally common 
categories. Therefore, the number of equally abundant cat-
egories associated with a particular value of an index gives 
a simple way to specify the evenness of a distribution. As 
shown by Jost [55], the key to an intuitive interpretation of 
the diversity of a distribution lies in the ability to convert 
a concentration measure into the “effective number of cat-
egories”, also known as “true diversity” (s). The method of 
conversion of the Gini’s index to an effective number of cat-
egories is presented in Additional file 3: Appendix A3.5.
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The importance of this number is that is measured in 
units of number of categories and hence its scale does 
not depend on the choice of a specific index. This lets 
us compare and interpret the diversity of a distribution 
easily. For example, it is natural to say that a distribution 
with eight equally common categories is more diverse 
than a community with four equally common categories.

Homogeneity Index and true diversity
The notion of true diversity has been developed in the 
context of nominal categorical variables, in which order 
does not matter. In the case of ordinal variables the key 
object of interest must be modified to be distribution of 
s equally abundant categories clustered on s consecutive 
bins. In this case the parameter s sets the smallest inter-
val of categories which contains all the data. Consider for 
example the IRSD decile distribution. As we will explain 
in the next section, if the HI of four equally populated 
consecutive deciles (i.e. s = 4) is 68.53, then all distri-
butions that have a smaller HI’s value are equivalent to 
a community whose socioeconomic groups are concen-
trated in at most four consecutive deciles. Thus, each 
distribution can be uniquely allocated to a concentration 
class according to the value of its homogeneity measure.

Therefore, given the set of the HI’s value which have 
been assigned to the effective number of categories, we 
can implement statistical operations on those values 
using the less than equal (≤) and greater than (>) rela-
tionships. This allows us to partition the range of the 
index values into a number of mutually exclusive and 
exhaustive equivalence classes in which the natural 
breaks among classes is determined by the number of 
categories in the distribution. This partition can make 
it easier to visualize what a HI’s value means and helps 
analysts to specify the socioeconomic diversity of a geo-
graphic area.

As discussed earlier, a key problem for the quantita-
tive analysis of a socioeconomic index is the definition 
of what is a “high” and “low” concentration of social dis-
advantage. This leads to the problem of choosing cut-off 
points to differentiate the IRSD deciles into broad level of 
socioeconomic disadvantaged group and determine the 
maximum effective number of categories for a homoge-
neous group.

Homogeneity Index and socioeconomic classification
As indicated in the conceptual framework section, the 
IRSD includes only variables related to relative disadvan-
tage, and therefore it allows to better distinguish between 
disadvantaged areas and least disadvantaged areas. 
This means that the SA1 score distribution in the lower 
deciles are more spread out than the scores of SA1 in the 
other deciles [56].

This phenomenon is common in highly skewed socio-
economic distributions and is generally referred in the 
literature as “clumping” [57]. In this case, a typical rule is 
to use cut-off points, such as the lowest 40% (deciles 1–4: 
high disadvantage), the highest 20% (deciles 9–10: low 
disadvantage) and the rest as the middle group (deciles 
5–8: medium disadvantage) [58]. As a result, a reasonable 
specification for an acceptably homogeneous peer group 
would be an IRSD decile distribution formed at most 
four consecutive deciles and a socioeconomic classifica-
tion based on three levels of disadvantage (low, medium 
and high). In the next two sections we give the definition 
and classification criteria for the HI.

Definition of Homogeneity Index
As indicated in the method section, the HI is a generali-
zation of the Gini’s index for ordinal categorical variables. 
The two key components underlying the HI are the Con-
centration index (CI) and the Divergence index (DI).

The CI is a concentration measure for nominal cat-
egorical variables. The properties to be considered 
necessary for any acceptable CI are: Normalization, Con-
tinuity, Symmetry, Strict Schur-Convexity and Value 
validity [51].

Most of the indices in the evenness literature satisfy 
the first three properties but only a few meet the require-
ments of Strict Schur-Convexity and Value validity. 
Among these indices, the Gini’s index is the most popular 
and is easily related to the pointwise ordering of the Lor-
enz curve [59].

Therefore, the CI is defined with reference to the Lor-
enz curve (LC). The LC plots the cumulative percentage 
of the population (y-axis) against quantiles or groups of 
the attribute variable. If the population is uniformly dis-
tributed, the LC will be a 45-degree line, known as the 
line of equality, running from the bottom left-hand cor-
ner to the top right-hand corner. In all other cases the 
curve is convex and lies below the line of equality. Thus, 
the CI is defined as twice the area between the LC and 
the line of equality, known as the Lorenz Zonoid [60]. 
For the computation and definition of CI see Additional 
file 3: Appendix A1. To determine the conditions for a CI 
to have Value validity see Additional file 3: Appendix A2.

We note that the definition of the CI can be viewed as 
a study of the discrepancy between a probability distribu-
tion (pdf) and the uniform distribution, but it does not 
completely reflect the amount of spread that the values 
of a random variable will take on. For example, differ-
ent distributions with same LC have different variance. 
This means that the ordering of the pdf coefficients is not 
important. Therefore, we introduce an additional element 
to the computation to the HI, that we call the Divergence 
Index (DI).
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The mathematical definition of the DI is presented in 
Additional file 3: Appendix 3, but for the purpose of this 
section it suffices to say that DI is a polarisation meas-
ure for ordinal categorical variables. The main properties 
of the DI are: Normalization, invariance of parallel shifts 
and simple aversion to median-preserving spreads [48].

The first two properties state that the minimum value 
(zero) should be taken for the one-point distribution 
and the “parallel” shift of the entire frequency distribu-
tion leaves the index’s value unchanged. The last property 
states that the transfer of cases from one category into 
the next, which is closer to the extreme categories (i.e. the 
first or last category) should result in an increased value 
of the polarisation measure as it will be closer to the dis-
tribution in which half of the population is concentrated 
at the end points of the distribution. An example of this 
extremal distribution would be a geographic area where 
the residents are evenly distributed between the least 
and most disadvantage socioeconomic quantiles or the 
youngest and oldest age group. In such a configuration, 
the variance of any bounded probability distribution is 
maximum [61]. Therefore, the DI captures the amount of 
fluctuations about the central location of a distribution as 
well as the local variation in the data. The DI shares some 
similarities with the variance. For example, distributions 
with same mean but different variance have different 
DI and distributions with different mean or median but 
same variance must have the same DI value.

Given the definitions of the CI and DI we can finally 
define the HI of a probability distribution over n ordered 
categories (Pn) as follows:

(1)

HI(Pn) =
CI(Pn)+ DI

(

P1
n

)

− DI(Pn)

1+ DI
(

P1
n

)

n ≥ 3 P1
n =

(

1

n
,
1

n
, . . . ,

1

n

)

As anticipated the HI is a number between 0 and 1: it 
vanishes if and only if the distribution is uniform and it 
assumes the value of 1 for the singleton distribution. In 
Additional file 3: Appendix A3.4 we show how the Schur-
convexity and Value validity conditions hold for this 
index.

This allows future comparability if different researchers 
selected different concentration and polarized functions 
in the formula.

Defining homogeneity degree classification
In this section we classify the homogeneity of the IRSD 
decile distribution, that we denote by P10, by dividing the 
HI’s range into four classes of concentration, in which the 
natural breaks among classes is determined by the num-
ber of equally abundant categories in the distribution. 
The starting point is the observation that it  
seems to be commonly agreed that a distribution concen-
trated on at most four consecutive deciles is acceptably 
homogeneous. We denote any such distribution by  
P4,10, and a representative member is for example 
P4,10 =

(

1
4
,
1
4
,
1
4
,
1
4
, 0, 0, 0, 0, 0, 0

)

 . Therefore, the most 
homogeneous class of distributions (Class A in Table  1 
below) consists of those with an HI higher than the HI of 
P4,10, that we denote by HI(P4,10). Applying formula  1, 
presented in the previous section, and the definitions of 
CI and DI presented in the Appendices, we obtain that 
HI(P4,10) = 68.53. For sake of simplicity we shall indicate 
HI(Ps,10) as HI(s) and therefore the most homogeneous 
class of distributions is defined as follows:

The next homogeneity class, class B in Table 1 below, is 
obtained in natural way by considering the decile distri-
butions that are not as homogeneous as P4,10 (HI < HI(4)) 

Class A: {P10:HI(4) ≤ HI(P10) ≤ HI(1),

where HI(4) = 68.53 and HI(1) = 100
}

.

Table 1 Homogeneity Index guidelines for  acceptance/rejection of  proposed region defined by  socioeconomic decile 
distribution

HI(s): HI’s value of s equally populated deciles, s = 1, 4, 5, 6, 10

Class Homogeneity Index (HI) guidelines for acceptance/rejection of proposed region defined by socioeconomic decile distribution 
P10

Equally populated deciles 
specification

Range Decision support system

A HI(4) ≤ HI(P10) ≤ HI(1) 68.53 ≤ HI(P10) ≤ 100 Proposed region is acceptably homogeneous

B HI(5) ≤ HI(P10) < HI(4) 57.62 ≤ HI(P10) < 68.53 Marginal heterogeneity—reassignment of some units may be beneficial

C HI(6) ≤ HI(P10) < HI(5) 46.62 ≤ HI(P10) < 57.62 Judgement required whether to accept homogeneous region or to reas-
sign units to other regions to improve homogeneity of current grouping 
units

D HI(10) ≤ HI(P10) < HI(6) 0 ≤ HI(P10) < 46.62 Proposed region is heterogeneous—reassignment of some units is needed
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but at least as homogeneous as P5,10 (HI ≥ HI(5) = 57.62). 
In formulas:

We consider these distributions as marginally homoge-
neous, and their corresponding geographic areas may 
benefit from some refinement, where some portion of 
the population is assigned to a different geographic unit. 
The next homogeneity class, class C in Table  1 below 
is defined similarly as class B, with the 5th decile sub-
stituted with the 6th decile. Its formal definition is as 
follows:

Some serious judgment is necessary in order to argue 
that a population that is uniformly distributed across 6 
consecutive deciles is homogeneous, so clearly in these 
cases homogeneity could be improved by refinement of 
the geographic areas.

Finally, the last homogeneity class, class D in Table  1 
below, is the one of the distributions that are even less 
homogeneous than those in class C. We consider this 
class clearly heterogeneous, and its formal definition is as 
follows:

This classification and the evaluation of the geographic 
unit are summarized in Table 1.

Definition of Location Index
Table  1 offers only a picture of the distribution con-
centration. Describing a distribution statistically also 
requires determining the location of the data. However, 
when dealing with ordinal categorical data, the standard 
measures of centre location, such as the mean or mode, 
are not appropriate for skewed distributions and often 
they do not give a meaningful value [41, 62]. For exam-
ple, homogeneous SA3s are mostly long tail skewed 
distributions.

As a result, we propose the use of a Location Index (LI) 
as a new measure of central tendency that is less sensi-
tive to long tailed skewed distributions and outliers. This 
index identifies the position of the bin in the distribution 
where the values are mostly concentrated, i.e. the bin 
such the values of the distribution in its surrounding bins 
are noticeably higher than the others. The LI is defined 
precisely in Additional file 3: Appendix B and B1, where 
we show that is closely related to the median. The dif-
ference between the LI and the median lies in its ease of 

Class B: {P10:HI(5) ≤ HI(P10) < HI(4),

where HI(4) = 68.53 and HI(5) = 57.62
}

.

Class C: {P10:HI(6) ≤ HI(P10) < HI(5),

where HI(6) = 46.62 and HI(5) = 57.62
}

.

Class D:
{

P10:HI(P10) < HI(6), where HI(6) = 46.62
}

.

computation and, most important, in the ease of gener-
alization to any number of variables.

The basic idea underlying the LI is to map a nested 
family of sets around the location of the bin into a single 
number. If the distribution is univariate the set is a sym-
metric interval formed by a finite number of categories 
and the concentration value is given by summing up the 
likelihood of these regions. In this way, each location has 
a concentration value and the one with the maximum 
value corresponds to the point of the LI. Therefore, the 
maximization of this functional is equivalent to finding 
the bin with the maximum concentration value. This spe-
cial property gives the LI a “best guess interpretation”: 
the LI is the value that is closest to all the other values on 
a variable when the sign error in guessing does not mat-
ter but its magnitude does.

To summarize, we believe that the combination of the 
LI and the HI’s classification criteria enables users to 
summarize easily the characteristics of a geography in a 
single table. This straightforward representation is help-
ful to evaluate the number of homogeneous areas for 
each socioeconomic disadvantage group and select a 
suitable region to identify peer groups geographies as we 
will show in the next section.

Example: an application to SA3 geography
In the earlier sections, we claimed that the combina-
tion of the LI and HI is important, and we elucidated the 
theoretical framework behind our claims. In this section, 
we provide empirical evidence to show that the combina-
tion of the LI and HI is a better descriptive statistic than 
traditional measures. We also show evidence that the LI 
is a more robust descriptive measure of the distribution 
location compared to other measures of central tendency. 
To demonstrate the validity of these indices, we use the 
Australian census SA3 geography.

Finally, to illustrate the applicability and usefulness of 
the proposed framework in the analysis of health care 
variation, we use as an example the variation of GP 
attendance across a subset of SA3s peer groups.

SA3s socioeconomic decile classification and Location 
Index
We begin by attempting to classify SA3s by using exclu-
sively a central tendency measure of the IRSD socioeco-
nomic index. To demonstrate the effective use of the LI 
on a given data set, we compared this measure to the 
mean, mode and IRSD score of 331 SA3s, where the 
IRSD score is created from the population weighted aver-
age (PWAVGS) of the SA1 scores within the larger areas 
[63].
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Figure  2 shows the number of SA3s in each socio-
economic group decile for all the statistical measures. 
The mean tends to cluster the SA3s toward the middle, 
implying that there is a high risk of misclassification for 
the lowest and highest socioeconomic categories. The 
opposite phenomenon is observed with the mode, that 
is largely concentrated at the end points of the socioeco-
nomic scale. Similarly, the PWAVGS IRSD score is biased 
by the skewed distributions of scores in the last and first 
categories. The LI, on the other hand, shows a more sym-
metric concentration of SA3s in the middle categories 
with a reasonable number of units in the first and last 
deciles.

The analysis above shows clearly that the choice of a 
measure of central tendency can significantly affect the 
classification of a given geography and the consequent 
identification of peer groups. In addition, using central 
tendency alone gives no indication of the diversity of 
socioeconomic conditions, and SA3s with same value of 
central tendency may be quite different, as we shown in 
the next example.

SA3s comparison in presence of heterogeneity
In this example we consider the distribution of SA1-
level IRSD score within SA3s and use their population 
weighted average (PWAVGS) score as measure of cen-
tral tendency. Consider the SA3 of Lake Macquarie-
East, located in the Hunter Region of New South Wales. 
This SA3 received an overall score of 1009.8(decile5) on 
the IRSD. The top chart in Fig. 3 compares the distribu-
tion of SA1 scores within this SA3 with that of Australia, 
depicted with the dotted black curve and overall score 
of 1002.6(decile5). Notice that horizontal axis repre-
sents IRSD intervals of size 25 and not deciles. This chart 
shows that the SA1 scores distribution is quite similar to 
the one for the entire Australia, suggesting that the SA3 
of Lake Macquarie-East is not a homogeneous area. This 
qualitative analysis is further confirmed by looking at the 
population decile distribution of Lake Macquarie-East in 
Fig. 1, where the histogram in red clearly shows that the 
IRSD decile distribution is almost uniform.

The diversity of this geographic area is highlighted 
by the thematic map in Fig.  3, which shows the decile 
distribution of the IRSD for the SA1s within Lake 

Macquarie-East. Each SA1 is coloured according to its 
IRSD decile and the legend shows the decile classifica-
tion. Overall, the map contains many SA1s of varying 
socio-economic status and, therefore, it is not meaningful 
to assign a summary IRSD index score to this geographic 
area. This conclusion is further confirmed by the fact that 
the true diversity index s is equal to 9.2 (not shown in 
the figure). This means that the distribution is scattered 
across almost all the 10 deciles and is close to be uniform. 
Similarly, the Homogeneity Index assumes a very low 
value of 8.5%, implying that this SA3 belongs to the class 
D of Table 1 and is therefore clearly heterogeneous.

Thus, whatever central tendency measure we use for 
the classification of this geographic area, the location 
value does not truly represent all the people in the area. 
As a consequence, it is difficult to draw comparisons 
between this SA3 and, for instance, a SA3 with similar 
score. Therefore, the use of any location value should 
always be accompanied by the HI value to acknowledge 
the diversity within a geographic area.

The usefulness of the HI information becomes clear 
when comparing two geographic areas with similar score 
or location value. For instance, the SA3 of West Tor-
rens located in the Western suburbs of Adelaide (SA), 
received a score of 1008.5(decile5), (see Fig.  3) which is 
close to the score of 1009.8(decile5) calculated for Lake 
Macquarie-East. Based on the central tendency index 
of the IRSD score, one would conclude that West Tor-
rens is not dissimilar to Lake Macquarie-East. The bot-
tom chart of Fig. 3 shows that that this is clearly not the 
case, since in West Torrens there is a greater proportion 
of its population living in the middle scores. In fact, 75% 
of the residents live in a SA1 with an IRSD score in the 
range 950–1050, while for Lake Macquarie-East the cor-
responding range is significantly broader, and equal to 
751–1075. This suggests that West Torrens has a higher 
degree of homogeneity compared to Lake Macquarie-
East. In fact, our analysis shows that the HI of West Tor-
rens is 48.89%, which is much higher than the 8.5% of 
Lake Macquarie-East and places this SA3 in the group C 
of Table 1.

The higher homogeneity of West Torrens is shown in 
the map at the bottom left of Fig. 3, representing the geo-
graphic distribution of the IRSD at SA1 level. The figure 

Fig. 2 SA3 Location Index (LI) and central measures classification of the Index of Relative Socioeconomic Disadvantage decile distribution
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clearly shows that this SA3 could be split in three much 
more homogeneous regions, justifying its classification in 
group C.

This example shows why the use of a central tendency 
indicator, such as the IRSD score, could potentially lead 
to misclassification of socioeconomically disadvantaged 
areas. It suggests that both homogeneity and Location 
Index should be used concurrently for the purpose of 
understanding the socioeconomic classification of geo-
graphic areas. It is therefore important to understand 
how the SA3 are distributed along both homogeneity and 
Location Index of the IRSD distribution. We address this 
issue in the next section.

SA3s homogeneity and Location Index classification
In this section the socioeconomic variable of interest 
is still the IRSD index, and we first focus on the distri-
bution of the HI across all SA3. We computed the HI 
for all the SA3 in Australia and report the results in 
Table 2. The table shows that the percentage of hetero-
geneous SA3s (class D) is almost 60% (59.82) and hence 
a reassignment of some subunits (i.e. SA1s or SA2s) is 
needed to improve the homogeneity in the study area. 
The proportion of SA3s in the two most homogeneous 
classes (A and B) is only 21%, with 19% of the units that 
need to be evaluated since they could greatly benefit 
from some level of reassignment (Class C).

In Table 3 we extend the analysis to include the Loca-
tion Index, and show the number of SA3s for a given 
combination of the LI and HI value as a function of the 
true diversity s index, which is easier to interpret than 
the value of homogeneity. In this table the grey shaded 
rows indicate the set of SA3s in the first two classes 
(HI(P10) ≥ HI(5)), and the yellow row indicates all the 
SA3s in the third class (HI(6) ≤ HI(P10) < HI(5)). Lastly, 
the remaining light blue rows show the numbers of het-
erogeneous SA3s (HI(P10) < HI(6)).

The table shows that the least disadvantaged and 
most disadvantaged deciles are by far the most homo-
geneous with respect to the HI value specification 
threshold (HI(5) = 57.69). In particular, most of the SA3 
with Location Index in the first or last 2 deciles belong 
to the homogeneous classes A and B.

This information is further illustrated on the rows 
below the table, that show the number and percentage 

Fig. 3 SA3 Index of Relative Socioeconomic Disadvantage distribution comparison—Lake Macquarie-East (#303 SA1s) and West Torrens (#143 
SA1s)

Table 2 Homogeneity distribution of the Index of Relative 
Socioeconomic Disadvantage for the SA3 geography

Homogeneity Index concentration class Tot

A B C D

SA3s 37 33 63 198 331

% SA3 11.18 9.97 19.03 59.82 100
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of SA3s for each LI value as well as the number and per-
centage of SA3s in the first two homogeneous classes, 
indicated in the last two shaded rows.

However, the proportion of SA3s in these categories 
is less than 5% (i.e. 16 SA3s). A slightly larger number 
of homogeneous SA3s is in the second and ninth decile, 
where they account for almost 11% of the SA3s (i.e. 37 
SA3s). The middle deciles, on the other hand, have a high 
proportion of heterogeneous units. Particularly, the least 
representative decile is the 5th decile and the most het-
erogeneous unit with an LI equal to 5 is the SA3 of Lake 
Macquarie-East (LI = 5, HI = 8.5), indicated in the last 
row of the 5th column and shown in Fig. 3.

In these examples we emphasized the importance of 
looking at both measures (LI, HI) in summarizing the 
socioeconomic disadvantaged of a geography and how to 
use them in practice. In the next example we show how 
to these concepts are helpful when analysing the varia-
tion of an indicator.

Reporting Health indicators across SA3s peer groups
To demonstrate the use of the HI and LI, we applied 
our methodology to the reporting of local variation 
among GP attenders across the SA3s in the inner and 

outer metropolitan area of Sydney. Data for this study 
were sourced from publicly available Medicare Benefits 
Schedule (MBS) aggregated at the level of SA3, which 
are administered by the Australian Government Depart-
ment of Health [64]. These data have two limitations: one 
is that they are mapped to the areas in which people live, 
rather than where services were provided, and the other 
is that they are collected at the level of postal area (POA), 
that do not have perfect correspondence to the SA3 and 
therefore require some adjustments.

In this report SA3s have been chosen as an appropriate 
level of geography to present MBS information as they 
are large enough in population numbers to ensure con-
fidentiality of MBS statistics, while allowing insights into 
the variation that exists within a study area. For a tech-
nical discussion of the confidentiality requirements the 
interested reader can refer to the government and state 
agency report documents [65, 66].

Figure  4 shows the map of the regional variation of 
age-standardized percentage of very high GP attenders 
(20+ visits) across the metropolitan area of Sydney [67]. 
Results for SA3 were ranked from highest (5.7–8.7%) to 
lowest (2.0–3.0%) and then split into four groups. The 
range within each of the four groups is displayed on the 

Table 3 SA3s homogeneity and Location Index decile classification of the Index of Relative Socioeconomic Disadvantage 
decile distribution

Socioeconomic decile classification for the SA3 geography

RANGE LOCATION INDEX DECILE SA3

s 1 2 3 4 5 6 7 8 9 10 Tot %

2 1 0 0 0 0 1 1 0 0 2 5 1.51

3 3 1 0 0 0 0 0 0 1 5 10 3.02

4 2 3 0 2 0 0 0 0 14 1 22 6.65

5 1 9 6 0 0 1 1 5 9 1 33 9.97

6 0 7 19 6 1 5 6 14 5 0 63 19.03

7 0 1 21 17 15 6 16 7 0 0 83 25.08

8 0 0 5 24 18 18 13 0 0 0 78 23.56

9 0 0 0 6 22 4 2 0 0 0 34 10.27

10 0 0 0 0 1 2 0 0 0 0 3 0.91

Tot 7 21 51 55 57 37 39 26 29 9 331

% 2.12 6.34 15.41 16.62 17.22 11.18 11.78 7.85 8.76 2.72 100

% 2.12 3.94 1.81 0.6 0 0.6 0.6 1.51 7.25 2.72 21.15

Tot 7 13 6 2 0 2 2 5 24 9 70
SA3s in class (A, B): Acceptably Homogeneous or Marginal Heterogeneity

SA3s in class (C): Judgement Required

SA3s in class (D): Likely Heterogeneous
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right-hand side of the map. The number of SA3s with the 
highest and lowest percentage of very high GP attenders 
were 22. Among these, the 13 SA3s with the highest per-
centage of very high attenders are all in the inner met-
ropolitan area, illustrated with yellow boundaries on the 
map. The remaining 9, with the lowest percentage of very 
high GP attenders, are in the outer area, illustrated with 
dark boundaries on the map.

In order to compare areas on a more equitable basis 
SA3s were assigned to the high (deciles 1–4) and low 
(deciles 9–10) IRSD socioeconomic disadvantage group 
according to the values of their Location Index. The 
socioeconomic decile classification of these SA3s is illus-
trated in Fig. 5. The figure shows that, with the exceptions 
of SA3 52, all the least disadvantaged SA3s are located in 
the outer area of Sydney and are perfectly aligned with 
the lowest GP attenders. It follows that the most disad-
vantaged areas are all in the inner metropolitan area and 
correspond to the areas with highest proportion of high 
frequency GP attenders.

In order to identify comparable SA3s or peer groups 
we will focus on the first three classes of concentration 
for the HI (i.e. A, B and C). The map in Fig. 6 shows the 
number of SA3s in the least and most disadvantaged peer 
group. All the ten SA3s in the low disadvantage group are 
in the least disadvantage peer group. On the other hand, 
five out of eleven SA3s in the high disadvantage group 
are in the most disadvantage peer group.

In order to understand the characteristics of these 
socioeconomic peer groups we drill down and look at 
the residential population attributes for each of the 15 
SA3s. Specifically, we selected a subset of key census 
variables that contribute to the IRSD SA1 score: income, 
employment, occupation, education and other indicators 

of disadvantage, indicated on the right-hand side of the 
graph in Fig. 7.

An area with most of the disadvantage indicators above 
the national average will have a low LI. Conversely, spatial 
units with values below the national average will have a 
high LI. It follows that indicators which are further away 
from the national average have a large impact on the LI 
value.

For example, the graph in Fig.  7 shows that the 
five most disadvantaged SA3s (i.e. 53, 60, 81, 83, 88) 
have on average a higher proportion of people with 
low income ( 1INCLOW : 51.36% ) or families with 
children under 15  years of age and jobless parents 
(2CHILDJOBLESS : 20.34%) compared to the national aver-
age (AUS, INCLOW : 40.5%;CHILDJOBLESS : 11.9%) . 
The ten least disadvantaged SA3s (i.e. 52, 57, 66, 67, 68, 69, 
70, 71, 72, 85), on the other hand, have on average a low per-
centage of INCLOW (23.10%) and CHILDJOBLESS(4.13%).

Discussion
Indices are frequently constructed to generate summary 
of the socioeconomic status of residential areas. A num-
ber of indices have been devised for health research over 
the years [68–70], including the notably Index of Multi-
ple Deprivation, for identifying the most deprived areas 
in England [38], and the Townsend’s index designed to 
explain variation in health in terms of material depriva-
tion [71]. Although these indices are designed primarily 
to be small-area measures [72, 73], they are also used to 
describe relative deprivation for higher-level geographies 
[74, 75].

A major problem facing researchers when construct-
ing indices for larger areas is determining whether the 
index’s score may be adequate to accurately describe 

Fig. 4 SA3s age-standardized percentage of very high GP attenders (20+ visits) Inner and Outer metropolitan area of Sydney. Source: Medicare 
Benefit Schedule 2012–2013
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the population living in that area. To facilitate this, a 
range of summary measures have been designed to help 
users understand deprivation patterns for higher-level 
geographies [38]. These methods are helpful to describe 
the overall intensity of deprivation across the larger 
area and highlight different aspect of deprivation. How-
ever, these analyses focus only to the most deprived 
small-areas and do not provide a full description of the 
entire socioeconomic distribution. In addition, they 
do not offer any guidance for the selection of the geo-
graphic area.

An additional problem that arises when working with 
socioeconomic indices is the classification of skewed 
distributions. Since the index score is a mean-based 

measure [38, 63], the computed value is influenced by 
the extreme scores in the distribution. Consequently, 
skewed distribution with concentration of scores near 
the middle can be classified as disadvantaged or least dis-
advantaged areas. As a result, the averaging effect of the 
socioeconomic index score chronically under-reports or 
over-reports disadvantage and can lead to incorrect soci-
oeconomic groups. Similarly, the index score of skewed 
distributions with concentration around the extreme cat-
egories is biased towards the middle.

As a response to these issues, this article presented 
a framework which is meant to assist in the analy-
sis and reporting of health care variation by identify-
ing homogeneous areas with similar socioeconomic 

Fig. 5 SA3s Location Index (LI) decile classification of the Index of Relative Socioeconomic Disadvantage: inner and outer metropolitan area of 
Sydney

Fig. 6 SA3 socioeconomic peer groups of the Index of Relative Socioeconomic Disadvantage for the inner and outer metropolitan area of Sydney
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characteristics, better known as peer groups. Therefore, 
to enable a fairer comparison of individual units with 
peers, the Homogeneity and Location Index were intro-
duced to measure respectively the concentration and 
central tendency of a socioeconomic decile distribu-
tion. This provides essential information for comparing 
each group on health indicators of interest.

However, the use of a concentration measure is imprac-
tical without knowing how to interpret a given homo-
geneity value, and especially for ordinal variables there 
is not much guidance on this subject in the literature. 
Thus, to better classify and compare the diversity of a 
geographic area, we have proposed to specify and inter-
pret the HI in terms of the number of equally populated 
groups in a distribution, also known as “true diversity” 
[55]. The essence of this approach is that it is a useful and 
effective method of representing the homogeneity of a 
community in “picture”, and lets us compare the diversity 
of a community easily.

Clearly, the specification of the maximum number of 
equally populated groups that correspond to a homoge-
neous community depends on the index being analysed. 
In this work we use the IRSD [56] to represent the socio-
economic conditions of Australian geographic areas and 
capture aspects of disadvantage. Given the observed 
patterns in the distribution of the IRSD scores, the low-
est 40% of scores was selected to identify the most dis-
advantaged deciles. As a result, the HI’s threshold for 
an “acceptably” homogeneous area was determined by a 
community of four equally populated contiguous deciles.

Other criteria can be chosen for the identification 
of homogeneous units and there is no definitive or 

“optimal” HI’s threshold value. However, we believe 
that greater clarity on this subject is obtained by bring-
ing into the picture the Location Index, that can help 
users understand when a given area is “highly” homo-
geneous or heterogeneous. For instance, distributions 
of six or more equally populated deciles and middle LI 
values are likely to contain a broader mix of people and 
households. On the other hand, distributions which 
have extreme LI values (i.e. very high or very low) and 
three or less populated deciles are likely to have large 
proportions of households with similar characteristics.

Therefore, the importance of this representational 
model lies essentially in its ability to serve as a guide 
for interpreting dimensionless concentration indices 
and provide a natural benchmark for these measures in 
terms of defining what is a “high” and “low” concentra-
tion of a probability distribution. This naturally leads to 
identify geographies where socioeconomic deciles indi-
cated by the LI are meaningful in terms of the HI con-
centration criteria.

Following this approach, the HI’s range has been 
partitioned into four classes of concentration, as indi-
cated in Table 1, and an application of these criteria to 
the Australian SA3 has shown that almost 60% of the 
census units are likely heterogeneous in terms of IRSD, 
making comparisons of indicators that correlate with 
socioeconomic disadvantage difficult to interpret. This 
result seems highly significant and clearly informs the 
discussion of which units are appropriate for reporting, 
suggesting that more work is needed to find ways that 
allow reporting at lower geographic level while preserv-
ing privacy.

Fig. 7 SA3 peer groups residential population census variables of the Index of Relative Socioeconomic Disadvantage for the inner and outer 
metropolitan area of Sydney
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The HI’s concentration criteria offer, however, only 
a partial picture of the distribution classification, and 
we have argued that one should simultaneously look 
at the Homogeneity and Location Index. In fact, map-
ping the Australian SA3s along both these dimensions 
provide interesting insights. The analysis revealed that 
the SA3s classified in the least (upper) and most (lower) 
disadvantaged deciles are by far the most homogeneous 
units with respect to the concentration criteria. This is 
expected to some extent, since distributions with Loca-
tion Index close to the edges have room to expand only 
on side. What is more surprising, instead, is the lack 
of homogenous SA3 with Location Index in the cen-
tre deciles: SA3s with LI in 5th and 6th deciles are all 
heterogeneous, with approximately symmetric distri-
butions with long tails. In other words, Australia lacks 
SA3s in the middle of the socioeconomic disadvantage 
distribution which are also homogeneous, a fact that 
seems worth of further investigation.

Overall, it seems that the discriminating power of the 
LI and HI lies in the lower and upper end of the distri-
bution for identifying the relative disadvantage (lower 
deciles), and the relative lack of disadvantage (upper 
deciles) of people in an area. Hence, these indices are 
particularly suitable for the classification of socioeco-
nomic indices that include variables related to relative 
disadvantage, such as the IRSD.

To better understand why this might be the case, we 
used as an example the age-standardized variation of 
very high GP attenders in the inner and outer metro-
politan area of Sydney [67]. To assist comparing areas 
on a fairer basis, the set of homogeneous SA3s with the 
greater and lower percentage of GP attenders was divided 
into two disadvantage categories (i.e. least and most 
disadvantage).

To identify the deciles cut-off of these socioeconomic 
groups, we used the 40–40–20 split rule, as in Filmer 
and Pritchett [58]. We conclude that the interpretation 
of these deciles is more straightforward for SA3s which 
have extreme LI values, and that it is usually easy to see 
why an SA3 which is in the first or last group of deciles 
has that status.

Overall, this snapshot provided a comprehensive pic-
ture of the SA3 socioeconomic characteristics, focus-
ing on people in the lowest and highest socioeconomic 
groups, where differences are usually large. It can assist 
in identifying specific populations within urban areas 
that require health services and resource allocation. It 
also highlighted that differences can even be seen when 
restricting comparisons to local areas with similar char-
acteristics and thereby useful to detect the unwarranted 
variation in health geographic studies.

Conclusion
Reporting on variation across similar areas aims to assist 
health care planners in the targeted delivery of health 
services by identifying areas where to direct efforts to 
deal with unwarranted variation. Importantly, a key step 
in studying health outcomes or services utilization is the 
investigation of spatial patterns of community charac-
teristics by mapping them and by assessing the degree of 
homogeneity using statistical methods based on individ-
ual level information [76].

Many data collections, however, are not released at 
individual level, and even when they are, they may not 
include information regarding individual-level socio-
economic position, as in the case of administrative data. 
This leads to a reliance on area-based information. While 
area-based measures are relatively easy to collect and 
utilize at small spatial scales, there is no general defini-
tion of homogeneous areas when working with medium 
or large aggregate population data. Moreover, the use of 
the index score becomes less and less meaningful as the 
size of an area increases. Hence, the use of area-based 
measures to direct support for areas of needs may create 
a risk for resource misallocations. Therefore, in this paper 
we introduced an easy to use statistical framework for the 
identification and classification of homogenous areas.

We applied this framework to assess the socioeconomic 
homogeneity of SA3, a census geography commonly used 
in Australia for reporting health indicators. Results from 
our investigation prompt us to discourage the use of this 
geography as unit of analysis in the socioeconomic context. 
The findings also suggest that the proposed framework is a 
useful tool for strategic planning purpose through its abil-
ity to identify areas of disadvantage within broader regions 
and capture key characteristics of the regions.

Therefore, this tool can be useful in raising discussion 
on the selection and use of geographic regions (grouping 
of geographic units) which may be indicative of socioeco-
nomic status. If the region is not acceptably homogeneous, 
a different definition of the region should be considered. 
The region could be divided in more subregions or a differ-
ent assignment of the geographic units to regions could be 
tried. Another option is the selection of a completely dif-
ferent geographic aggregation unit. Hence, this statistical 
framework can be naturally embedded in regionalization 
or clustering methods for building or grouping homog-
enous regions.

Finally, the combination of the Homogeneity and Loca-
tion Index constitutes a clear and consistent framework 
for geographic variation studies. The advantages of such 
indices include statistical efficiency and a simple presen-
tation of results. They facilitate the visualization of socio-
economic characteristics of geographic areas in a way 
that can be combined into a dashboard, integrating the 
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homogeneity and central location of the data. This pow-
erful method of illustrating and classifying a geographic 
area is, therefore, a valuable tool that can act as an inter-
face between the technical and policy disciplines as well 
as with the decision makers, so they can make scientifi-
cally informed decisions.
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