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Abstract 

Background: Device-collected data from GPS and accelerometers for identifying active travel behaviors have 
dramatically changed research methods in transportation planning and public health. Automated algorithms have 
helped researchers to process large datasets with likely fewer errors than found in other collection methods (e.g., 
self-report travel diary). In this study, we compared travel modes identified by a commonly used automated algorithm 
(PALMS) that integrates GPS and accelerometer data with those obtained from travel diary estimates.

Methods: Sixty participants, who made 2100 trips during seven consecutive days of data collection, were selected 
from among the baseline sample of a project examining the travel behavior impact of a new light rail system in the 
greater Seattle, WA (USA) area. GPS point level analyses were first conducted to compare trip/place and travel mode 
detection results using contingency tables. Trip level analyses were then performed to investigate the effect of 
proportions of time overlap between travel logs and device-collected data on agreement rates. Global performance 
(with all subjects’ data combined) and subject-level performance of the algorithm were compared at the trip level.

Results: At the GPS point level, the overall agreement rate of travel mode detection was 77.4% between PALMS and 
the travel diary. The agreement rate for vehicular trip detection (84.5%) was higher than for bicycling (53.5%) and 
walking (58.2%). At the trip level, the global performance and subject-level performance of the PALMS algorithm were 
46.4% and 42.4%, respectively. Vehicular trip detection showed highest agreement rates in all analyses. Study partici-
pants’ primary travel mode and car ownership were significantly related to the subject-level mode agreement rates.

Conclusions: The PALMS algorithm showed moderate identification power at the GPS point level. However, trip level 
analyses found lower agreement rates between PALMS and travel diary data, especially for active transportation. Test-
ing different PALMS parameter settings may serve to improve the detection of active travel and help expand PALMS’s 
applicability in geographically different urbanized areas with a variety of travel modes.
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Background
Identifying and understanding human location and 
movement is a crucial part of transportation planning, 
public health, and health geography research [1]. Previ-
ous studies have shown that people who walk or bike for 
transportation are more likely to meet public health rec-
ommendations by accumulating more physical activity 
[2, 3]. Since the 1970s, governmental planning agencies 
have relied on travel survey data in order to create trans-
portation models [4–7], including identifying origins 
and destinations of people’s reported movements, travel 
modes, and related activities. More recently, a growing 
interest in active transportation (primarily walking and 
bicycling) on the part of public health [2, 3, 8, 9], has lead 
researchers to obtain more objectively measured mobil-
ity data through the use of such devices as global posi-
tioning system (GPS) data loggers and accelerometers to 
inform transportation models. However, computational 
algorithms are required to process the massive quantities 
of GPS and accelerometer data generated in these stud-
ies [5, 8, 10–13], and to date, limited work has evaluated 
these algorithms to understand the details on how they 
quantify fine-scale travel behaviors.

Self-reported travel diaries are one of the most com-
mon instruments for obtaining data on people’s locations 
and movements [14, 15]. Traditionally, travel diaries have 
been considered as the comprehensive source of informa-
tion for travel behaviors [16]. This self-report approach 
allows for the collection of data on trip purposes, depar-
ture and arrival times, travel mode, and related respond-
ent characteristics including age, sex, race/ethnicity, 
education level, income, health status, etc. Unfortunately, 
self-reported travel surveys are a burdensome, leading to 
low compliance and inaccuracy. The resultant data are 
susceptible to human errors such as recall or social desir-
ability bias [17]. Common problems include missed trips, 
incomplete entries, and misreported time stamps and 
travel behavior characteristics [18]. Nevertheless, impor-
tant behavioral data such as purpose of travel, visited 
place names, addresses, and certain travel modes cannot 
be obtained without study participants’ direct input [19]. 
In addition, in many instances, the primary measure-
ment method for travel behaviors remains self-reported 
because of cost and feasibility [14, 15].

Combined use of individual-based GPS and acceler-
ometer devices to measure location, speed, and physi-
cal activity levels has provided new opportunities to 
characterize travel behaviors at fine spatial and tem-
poral scales [19, 20]. During the last few years, the use 
of these types of devices to obtain objectively meas-
ured travel behaviors has taken a salient role in active 
transportation and physical activity studies [21, 22]. 
Although not entirely error-free, these techniques are 

considered to provide more objective and accurate 
measures of travel behavior than the traditional meth-
ods that rely on active respondent reporting [23]. As 
passive data collectors, GPS and accelerometer devices 
reduce study participant burden and likely enhance 
data quality [24]. Also, GPS data offer information on 
traveler’s route choice and corresponding speed, which 
have been difficult to collect through travel survey 
methods [5].

However, processing massive GPS and accelerom-
eter data sets to reconstruct mobility patterns in terms 
of trips, trip origins and destinations, and travel mode, 
requires robust computational power, sophisticated algo-
rithms, and expertise in data management skills [10]. In 
addition, algorithms often require expert user input for 
specification of parameter settings for data processing.

Personal Activity Location Measurement System 
(PALMS) is a web-accessible system enabling the devel-
opment of travel behavior and physical activity variables 
from device data [25, 26]. Its main purpose is to merge 
and process time-stamped data from devices such as 
GPS data loggers, accelerometers, and heart-rate moni-
tors. PALMS was developed by the Center for Wireless 
and Population Health Systems, University of California, 
San Diego. PALMS identifies trips and places, and it cat-
egorizes trips into three travel modes: walking, bicycling, 
or vehicular trips. In addition to processing raw time-
stamped data, PALMS can aggregate the data into more 
manageable sets by day, participant, or event.

Besides PALMS, several algorithms have been devel-
oped to measure and quantify visited locations, travel 
behaviors, and physical activities by using GPS and accel-
erometer data. Some of these algorithms rely solely on 
the geographical coordinates information collected via 
standalone GPS data loggers or mobile phones [1, 10, 
27]. These algorithms use frequency, density, and speed 
information from the spatially-referenced data to detect 
and classify activity locations and trips. Other algorithms 
including PALMS use GPS with accelerometer data to 
identify fine-scale travel behaviors such as walking [12, 
28, 29].

The performance of the PALMS algorithm was evalu-
ated in previous studies [8, 25], and results showed mod-
erate agreement rates for travel modes (agreement using 
SenseCam [25]: 65.3–93.4%; agreement using travel logs 
[8]: 74.2–89.8%). The performance of other algorithms 
varied considerably across studies, to include: the per-
centage of correctly identified trips that were recorded 
in a travel diary (78.9–86.0%) [5]; the proportion of cor-
rectly identified stop locations (92.3%) [10]; the propor-
tion of locations for which a GPS-interview results match 
was found (50–100%) [20]; the proportion of GPS data 
time that correctly identified activity location and trip 
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occurrence by comparing with recall interview results 
(95.8%) [30].

In the travel diary framework, respondents are 
instructed to record characteristics of individual trips, 
rather than at fixed time intervals. Therefore, many pre-
vious studies assessing specific algorithms used trips as 
the unit of analysis by connecting consecutive GPS data 
points sharing a single identified travel mode [5, 31–34]. 
Since people perceive their travel behaviors based on the 
trip unit, this approach is appropriate.

However, since PALMS produces output data as 
GPS points with corresponding trip/place informa-
tion at every time interval (e.g., minute), previous stud-
ies assessed the PALMS algorithm using individual 
GPS point records as the unit of analysis. PALMS was 
assessed in previous studies by comparing its classifica-
tion of trips by mode with SenseCam images from forty 
adult cyclists [25], and travel logs from two research 
assistants [8]. In these studies, the PALMS algorithm was 
evaluated through a collective measure; person-level GPS 
data were coalesced into a single data set and analyzed 
in aggregate. Data were aggregated because the sample 
size was too small to conduct subject-level analyses, and 
socioeconomic and other demographics information was 
not obtained from study participants.

The objective of the present study was to compare 
PALMS travel behavior information with that of travel 
diaries to address the strengths and weaknesses of the 
PALMS automated algorithm. According to reviews of 
GPS data processing methods and studies of the reli-
ability of wearable activity trackers [35, 36], no other 
study assessing PALMS or other algorithms conducted 
the analyses at both GPS and trip levels using the same 
data sources. In the present study, we first combined data 
from all subjects to assess PALMS global performance, 
and second, we evaluated PALMS performance at the 
participant level to assess individual performance. Lastly, 
to investigate reasons for possible discrepancies across 
different levels of analyses, we looked into the socioeco-
nomic characteristics of study participants.

Methods
Data development
Participants and Sampling
Participant data came from the Travel Assessment and 
Community (TRAC) project, which recruited > 700 base-
line participants within the greater Seattle, WA (USA) 
area between July 2008 and July 2009. The purpose of 
TRAC was to investigate effects of a new light rail transit 
(LRT) system on people’s travel behaviors in two follow-
up data collection efforts [12, 37].

For this study, we sampled 60 subjects from base-
line TRAC participants. Because the analysis focused 

on travel mode identification, we conducted a stratified 
random sample of participants to ensure adequate cover-
age of the less common travel modes (e.g., transit, walk-
ing). Participants were first sorted into groups of drivers 
(58.1% of the full cohort), transit users (3.8%), or walk-
ers (30.9%), based on the travel mode that each person 
reported most frequently in his or her travel diary (the 
remaining 7.2% of participants used bicycle, motorcycle, 
or taxi for their primary travel mode). From among each 
of the 3 groups, we randomly selected 20 participants.

Subjects in the final sample were 52.4 years old on aver-
age, 46.7% were male, 73.3% were white non-Hispanic, 
65% completed a bachelor’s or higher degree, 48.3% 
had full time jobs, 48.3% reported an annual household 
income ≤ $50 k USD, 43.3% were married/partnered. The 
average household size was 2.1 with 0.4 children. House-
holds had an average of 1.1 cars, and 45% lived in single-
family housing.

Accelerometer, GPS, travel diary, and LifeLog
Participants were enrolled for one week and wore a GPS 
data logger (GlobalSat DG-100; New Taipei City, Tai-
wan) to record geospatial locations, and a hip-mounted 
accelerometer (ActiGraph GT1M; Pensacola, FL, USA) 
to measure movement. Participants also recorded place 
names, addresses, times of arrival and departure, activi-
ties at each place, and travel mode from place to place in 
a travel diary during the same days in which they wore 
the GPS and accelerometer.

Using the time-stamp as a common identifier, acceler-
ometer, GPS, and travel diary data were combined into 
a “LifeLog”, which is an individual-level master table for 
each participant. One record in the LifeLog represents 
a 30-s time-stamp with corresponding accelerometer 
counts, GPS latitude, longitude, and speed, and travel 
diary place or trip characteristics. Detailed methods and 
description for creating the LifeLog were documented in 
previous studies [12, 19].

Processing GPS and accelerometer data with PALMS 
and merging it with the LifeLog
PALMS allows researchers to specify analytical param-
eter settings for identifying trips and places. In this 
study, PALMS version R4 default parameters were used 
to process GPS and accelerometer data from the sixty 
subjects. PALMS calculates the distance and speed 
between sequential GPS points. Subsets of GPS points 
were flagged as being members of trips if they spanned 
≥ 100  m within an interval of 180  s. Trips with a 90th 
percentile speed of ≥ 25 km h−1 were categorized as driv-
ing. Trips with a 90th percentile speed ≥ 10 km h−1 and 
< 25 km h−1 were classified as bicycling. Finally, trips with 
a 90th percentile speed ≥ 1 km h−1 and < 10 km h−1 were 
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identified as walking. Stationary places between trips 
were identified as having a duration of ≥ 300 s with GPS 
points within a 30 m radius.

To generate complete tables (i.e. with one GPS meas-
urement per accelerometry epoch), PALMS imputes GPS 
points that were missing due to signal loss by duplicat-
ing records at the mean coordinate of the 20 records 
collected before signal loss (see Meseck et  al. [38] for 
detailed information on imputation of GPS data). For 
the 60 participants over the one-week measurement 
period, there were 1,712,721 measured records, and 
PALMS imputed 177,779 GPS records (10.4%). Output 
from PALMS included original variables (XY coordi-
nate, speed, accelerometry counts), as well as calculated 
trip and place variables. For comparison with the LifeLog 
data, PALMS was configured to use 30 s time-stamps.

Results from PALMS were exported as CSV format 
files. We linked PALMS trip and place information with 
the LifeLog using subject ID, date, and time stamp as 
common identifiers. Incomplete travel diary records 
(e.g., missing trip start or end time, 0.01%), trips with 
an unspecified travel mode (0.3%), trips taken on ferries 
(0.002%), and tours (trips recorded with the same start 
and end location, 0.3%) were removed from the data set. 
Consequently, 987,550 observations of GPS points with 
complete PALMS and LifeLog data (99.4% of merged 
data) remained.

GPS point level analyses
PALMS and travel diary data were first compared at the 
GPS point level to determine the amount of agreement 
between PALMS and travel diary identified trips, places, 
and travel mode. For trip/place identification compari-
son, two variables were created for each observation: one 
indicating whether the PALMS algorithm classified the 
GPS point as part of a trip or place, and another indicat-
ing whether the travel diary classified the observation as 
part of a trip or place. These two variables were used in 
a 2 × 2 contingency table to calculate trip classification 
agreement at the GPS point level.

For travel mode identification comparison, three vari-
ables were created for each observation. PALMS classifies 
trips into one of three travel mode categories (pedestrian, 
bicycle, or vehicle), whereas the travel diary included 14 
options: 1 (auto/truck/van), 2 (carpool/vanpool), 3 (bus), 
4 (light rail), 5 (monorail/trolley), 6 (heavy rail), 7 (dial-a-
ride/paratransit), 8 (school bus), 9 (ferry), 10 (taxi/shut-
tle bus/limousine), 11 (motorcycle/moped), 12 (bicycle), 
13 (walk), 14 (airplane). For this analysis, we recoded the 
ten motor vehicle-based travel modes in the travel diary 
(1–8, 10, 11) as vehicle. These three categories were used 
in a 3 × 3 contingency table to calculate travel mode clas-
sification agreement.

The merged GPS point level data were examined at the 
subject level to compare the number of trips and places 
for each participant i. The average difference (D) between 
PALMS and travel diary was calculated in Eq.  (1), where 
xPi , xTDi

 are the number of trips (places) in PALMS i and 
travel diary i, and n is the number of study participants.

Trip level analyses
Trips recorded in the travel diary were used as the unit of 
analysis in a trip-level data set. PALMS and travel diary 
data were first tested for matching based on the overall 
number of trips, and more stringently, based on the tem-
poral overlap between trips identified in these two sources. 
Each travel diary recorded trip had a unique trip number, 
together with information about starting time, ending time, 
duration of a trip, and travel mode. Trips from PALMS also 
had unique trip IDs and were matched with travel diary 
trips based on subject ID, date, and time.

Trips from PALMS and the travel diary were considered 
to match if they had any temporal overlap. We computed 
an agreement rate (ARt) as the proportion of trips recorded 
in travel diaries that were matched to PALMS trips (Eq. 2), 
where mt is the total number of matching trips, and xTDt

 is 
the total number of trips from travel diaries.

Next, because times reported in travel logs may not 
match device times precisely, we performed a sensitivity 
analysis by repeating the matching analysis using different 
proportions of overlap time. Specifically, we tested > 0%, 
> 25%, > 50%, > 75% and 100% of PALMS trip duration 
overlapping with travel diary trip duration. We computed 
the percentage of overlapped time (OT) between each 
PALMS and travel diary trip in Eq. (3), where r is duration 
of temporal overlap between PALMS and travel diary, and 
tTD is time duration of a trip recorded in travel diary.

Lastly, trip-level OT data were aggregated to subject-level 
agreement rates (ARi) using the five OT cut-off points of 
> 0%, > 25%, > 50%, > 75% and 100%, as an assessment of 
PALMS subject-level performance in Eq.  (4), where mi is 
the total number of matching trips from participant i.

To investigate factors associated with differential 
PALMS subject-level performance across the sixty partic-
ipants, personal characteristics including primary travel 

(1)D =

∑

n

i=1

(

xPi
−xTDi

)

n

(2)ARt =
mt

xTDt
× 100

(3)OT =
r

tTD
× 100

(4)ARi =
mi

xTDi
× 100
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mode and socioeconomic factors (e.g., age, sex, race, 
education, household income, children, car ownership) 
were taken into account. Two types of response varia-
bles were used in statistical modeling. First, subject-level 
agreement rates were used as a response variable. Sec-
ond, since subject-level agreement rate is the proportion 
of correctly identified trips recorded in travel diary, we 
also investigated the relationship between the number of 
matching trips and participants’ personal characteristics. 
Ordinary least squares and linear mixed effects models 
were used for the first response variable; negative bino-
mial and mixed effects negative binomial models were 
applied for the second response variable.

Results
GPS point level performance
Classification of GPS points in PALMS and travel diary
PALMS classified 56.0% of trip observations in the travel 
diary as trips and 94.7% of place observations in travel 
diary as places (Table 1). The level of agreement between 
the two measures was also assessed by the inter-rater 
reliability test. Cohen’s kappa statistic was 0.463 (p value 
< 0.01) between PALMS and travel diary.

Table  2 shows the travel mode classification results 
across all participants at the GPS point level. The over-
all GPS point level agreement rate for travel mode match 
between PALMS and travel diary was 77.4%. Cohen’s 
kappa statistic was 0.484 (p value < 0.01). The agreement 

rate between PALMS and travel diary observations was 
higher for vehicle versus bicycling and walking. 

Comparing trips and places identification by individual 
participant
Figure 1 shows the difference in the number of places and 
trips per day extracted from the travel diary and from 
PALMS by participant. Differences did not appear to be 
consistent across participants. PALMS found an equal or 
greater number of trips for 71.7% of the sample and fewer 
trips for 28.3% of the sample relative to the travel diary 
(Fig.  1a). Also, PALMS identified an equal or greater 
number of places for 55% of the sample, and found fewer 
places among 45% of the sample (Fig.  1b). On average, 
PALMS identified 3.1 more trips and 2.1 more places 
per day by participant during the seven consecutive days 
than were found in the travel diary.

Comparing travel diary and PALMS data for one day 
of activity from two subjects
Visualization of travel diary and PALMS outcomes with 
corresponding maps provides some insight into the 
observed discrepancies. Figure 2 shows travel diary and 
PALMS data for one day of activity from two subjects. 
The upper and lower panels show an example of high and 
low agreement between travel diary and PALMS out-
comes, respectively.

In the high agreement case (Fig. 2a, b), eight vehicular 
trips and two walking trips were reported in the travel 
diary; PALMS identified seven vehicular trips and two 
walking trips for this day for this subject. Based on these 
visuals, we could conclude that both travel diary and 
PALMS travel behavior identification algorithm worked 
well for this subject for this day.

In the low agreement case (Fig. 2c, d), the travel diary 
records included six vehicular trips and one walking trip. 
However, PALMS identified eight vehicular trips, seven 
bicycling trips, and nine walking trips within the same 
time period. Considering GPS speed and accelerometer 
count patterns between 09:00 and 14:00, and 19:00 to 

Table 1 Trip and place classification agreement at the GPS 
point level

Travel diary (LifeLog)

Trip Place

GPS point counts (%) GPS point counts (%)

PALMS

Trip 41,495 (56.0%) 48,016 (5.3%)

Place 32,613 (44.0%) 860,970 (94.7%)

Total 74,108 908,986

Table 2 Travel mode classification at the GPS point level

Travel diary (LifeLog)

Vehicle Bicycle Walking

GPS point counts (%) GPS point counts (%) GPS point counts (%)

PALMS

Vehicle 25,963 (84.5%) 1024 (45.6%) 2271 (26.6%)

Bicycle 2916 (9.5%) 1202 (53.5%) 1299 (15.2%)

Walking 1835 (6.0%) 20 (0.9%) 4965 (58.2%)

Total 30,714 2246 8535
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00:00, this subject may have neglected recording some 
walking trips in travel diary. On the other hand, a sin-
gle vehicular trip might have been identified as multiple 
vehicular and bicycling trips in PALMS. It is possible that 
vehicular trips with low speed were identified as bicy-
cling trips in PALMS.

Trip level performance
Global performance
There were 2100 trips in the travel diaries of the sixty 
subjects across all modes. The days on which these trips 
were recorded had 2483 trips across all modes derived 
from PALMS. 1233 trips from the travel diary were iden-
tified by PALMS as trips (regardless of mode) (58.7%), 
598 (28.5%) travel diary trips were not matched to a 
PALMS trip, and 269 (12.8%) travel diary trips were split 
into more than one trip in PALMS. Of the 598 travel 
diary trips that were not captured by PALMS, 56% were 
reported as vehicular trips, 41.1% were reported as walk-
ing, and the remaining 2.9% were reported as bicycle 
trips.

Figure 3 shows the agreement rates (ARt) by varying 
the percentage of overlap time (OT) (0–100%) between 
PALMS and the travel diary. As expected, agreement 
rates were greater for lower values of OT percentage. 

The overall agreement rate (OT > 0%; where there was 
any temporal overlap between PALMS and travel diary 
trips) across the three travel modes was 46.4%. The 
agreement rate for vehicle, bicycle and pedestrian trips 
was 52.5%, 35.7%, and 34.8%, respectively.

Subject level performance
To assess subject-level correspondence between 
PALMS and travel diary trip identification, we calcu-
lated agreement rates for each subject (ARi). The total 
number of correctly identified trips per subject was 
first calculated by applying the same methods used in 
global performance analyses. This number of matched 
trips was divided by the total number of trips recorded 
in the subject’s travel diary.

Figure  4 shows inter-subject variation in agreement 
rates based on having any OT. Of the 60 subjects, 10 
(17%) had an agreement rate that was lower than 20%. 
Among these subjects, three had 0% agreement rates. 
Proportions of subjects that had an agreement rate of 
20–40%, 40–60%, 60–80%, 80–100% were 27.1%, 32.2%, 
20.3% and 3.4%, respectively. Based on these subject-
level agreement rates, the mean agreement rate was 
calculated as 42.4% (OT > 0%).

Fig. 1 Count of trips (a) and places (b) per day by study participant
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Statistical modeling for PALMS subject‑level performance
Four statistical models were applied to investigate vari-
ations in subject-level performance (OT > 0%) (Table  3). 
Models I and II show OLS and negative binomial mod-
eling results. Also, since all subjects were clustered in 
three primary travel modes, we applied mixed-effects 
models to reflect hierarchical data structure in models 
III and IV. The average subject-level agreement rate was 
59.4%, 20.5%, 48.2% for driver, transit user, and walker 
groups, respectively.

Car ownership was statistically significant and posi-
tively associated with PALMS subject-level perfor-
mance in all models with 95% confidence interval 
except for model II (p value = 0.057). Primary travel 
mode was also statistically significant in models I and 
II. Being in the driver or walker group (with the tran-
sit user group as the reference category) was related to 

higher performance in PALMS. Primary travel mode 
was also used as a random intercept in mixed-effects 
models (III, IV). The intra-class correlation coefficient 
(ICC) was higher in model III. Other personal char-
acteristics were not related to PALMS subject-level 
performance.

The hierarchical data structure was better explained 
in the linear mixed-effects model (model III), which is 
summarized in Fig. 5. Bars that do not span 0 (e.g., travel 
mode and car ownership) indicate a significant relation-
ship. For comparison, OLS model (model I) results were 
also included in the figure. With car ownership being 
the only statistically significant variable in model III, it 
was visualized using random intercepts by setting all 
other covariates to zero in Fig.  6, which shows both of 
random intercepts and the fixed coefficient of car own-
ership. Agreement rates increased with car ownership 

Fig. 2 a, c show an example of high and low agreement between travel diary and PALMS outcomes, respectively. b, d represent places and travel 
routes identified by PALMS for each case. A bigger circle means high frequency of visit in the map
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Fig. 3 Agreement rate in the different modes by percentage of overlapped time (OT)

Fig. 4 Subject-level agreement rates (OT > 0%)
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for all subjects, but transit users had significantly lower 
agreement rates compared to the high drivers and high 
walkers.

Discussion
This study compared PALMS place, trip, and travel mode 
identification results with travel diary data from sixty 
adults living in a mid-sized US metropolitan area, the 

greater Seattle area, and selected for having different pri-
mary travel modes. Compared to previous GPS algorithm 
assessment studies [5, 8, 10, 25], the study used a larger 
sample and examined travel mode agreement among 
2100 recorded trips with 987,500 GPS point observa-
tions. The two data sets offered two levels of analysis.

At the GPS point level analysis, PALMS trip and 
place classification agreement rates were quite different 
at 56.0% and 94.7%, respectively. The place identifica-
tion agreement rate was similar to that of a study which 
compared PALMS outcomes with SenseCam images 
sampled every minute (93.4%) [25], but the trip identifi-
cation agreement rate was lower (88.5%) [25]. Since the 
present study used the self-reported travel diary as refer-
ence data, the results cannot be directly compared with 
objectively captured photographic data. However, the dif-
ference between the two studies suggest that diary data 
for places is more precisely recorded than it is for trips. 
The selected population mixing primarily drivers, transit 
users, and walkers could also explain the different results.

Agreement rates varied significantly by travel mode. 
While the rate was high at 77.4% for all observations, 
they were lower for bicycle (53.5%) and walking trips 
(58.2%) compared to vehicular trips (84.5%) at the GPS 
point level. Notably, 45.6% of bicycling trip GPS points 
recorded in the travel diary were classified by PALMS as 
driving. Distinguishing between driving and bicycling can 

Fig. 5 Coefficient and confidence interval plot for subject-level agreement rate regression (Model I and III)

Fig. 6 The effect of car ownership on subject-level agreement rate 
by primary travel mode
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be difficult due to primary reliance on speed recorded in 
GPS data. In PALMS, the cut-off speed used for differ-
entiating driving from bicycling was 25 km h−1. Results 
would likely be different using higher or lower cut-off 
speeds. In addition, the number of observations for bicy-
cling trips in our sample (2246 GPS points from 70 trips) 
was relatively small compared to other travel modes 
(vehicle: 30,714 GPS points from 1367 trips; walking: 
8535 GPS points from 663 trips). It is also likely that dis-
tinguishing between motor vehicle travel and bicycling 
is more challenging in higher traffic and congested areas 
due to lower vehicular speeds. The use of ancillary data, 
such as measured heart rate, which was not available for 
this study, would enhance the performance of PALMS for 
separating bicycle trips from driving [39].

The difficulties in identifying trips and travel modes 
were also confirmed through individual participant level 
analyses. PALMS identified an average of 23.9 more trips 
per subject than were recorded in the travel diary, and 
71.7% of subjects had more trips identified by PALMS 
than were recorded in the travel diary. Disparities in trip 
counts were much higher than the discrepancies seen for 
PALMS place identification algorithm results (16.3 more 
places per subject on average; 55% of subjects with more 
places in PALMS versus the travel diary). Visualizing 
mapped data from two subjects helped points to known 
limitations in travel diary data, which are prone to errors 
and omissions in recorded trips [5, 15, 17]. Evidence of 
unrecorded trips can be found in GPS and accelerome-
ter data. Also, many single trips as recorded in the travel 
diary were split into multiple trips by PALMS. However, 
these errors could be minimized by careful selection of 
parameter settings in PALMS and by varying tolerances 
for acceptable short-duration stops within trips.

Since the GPS point level analyses revealed some limi-
tations, we reconstructed our data at the trip level and 
compared PALMS outcomes with the travel diary. We 
took a novel approach of reporting global and subject-
level performance. In the global performance analyses, 
we found that 12.8% of trips recorded in the travel diary 
were split into multiple trips in PALMS. This result con-
firmed one of our speculations about why PALMS iden-
tified more trips than travel diary records. For trip level 
analyses, we took the most conservative perspective by 
excluding these divided trips from correctly identified 
trip group.

In the global performance analyses, we advanced the 
agreement analyses by introducing the percentage of 
OT between PALMS and travel diary. In the analyses, 
the overall agreement rate was lower (46.4%, OT > 0%) 
than the results from GPS point level analyses (77.4%). 
Since we used strict rules by removing divided trips from 
the correctly identified trip group, many GPS points 

previously labeled as matched points were classified as 
unmatched trips in this level of analysis.

The agreement rate between PALMS and travel diary 
travel modes at the trip level was highest for vehicular 
trips (52.5%, OT > 0%), consistent with GPS point level 
analysis results. Bicycling had the second highest agree-
ment rate (35.7%, OT > 0%), with walking trip agreement 
rate being slightly lower (34.8%, OT > 0%). At the GPS 
point level, agreement for walking was higher than for 
bicycling (58.2% vs. 53.5%). However, the agreement rate 
for vehicular trips was much higher (84.5%). This dis-
crepancy is likely due to the parameters for speed used 
to identify walking, bicycling, driving, which were speci-
fied as 1–10  km  h−1, 10–25  km  h−1, and ≥ 25  km  h−1, 
respectively. Walking and bicycling usually do not 
exceed 25  km  h−1. However, motor vehicles often drive 
at 25 km h−1 for extended intervals, particularly in urban 
areas with high traffic congestion. The overlap in actual 
speeds increases the difficulty in differentiating differ-
ent travel modes. The agreement rate was also highest in 
vehicular trips in a previous study that assessed PALMS 
[25].

In the subject-level performance analyses, the overall 
agreement rate (42.4%, OT > 0%) was slightly lower than 
in the global performance analyses (46.4%, OT > 0%). 
Subject-level agreement rates were highly variable across 
subjects, with a range of 0–87.5%. To further investigate 
this discrepancy, we included primary travel mode and 
socioeconomic information as covariates in subject-level 
models.

Primary travel mode was found to be the strong-
est explanatory variable examined for the discrepancy 
between PALMS and travel diary travel modes. Subject-
level agreement rates were highest among those identi-
fied primarily as drivers and lowest among primarily 
public transit users. A previous study showed that transit 
users have more walking trips than non-users, which will 
ostensibly affect their individual-level agreement rates 
[40]. Also, transit trips have spatial and temporal char-
acteristics that may make them more difficult to iden-
tify: they have more short-duration stops in designated 
areas than driving trips; public transit vehicles mostly 
run along arterial roads with stop-and-go traffic signals 
and congestion; and they may be more subjected to the 
urban canyon effects than driving trips, which can lower 
the quality of GPS data [5]. Owning a car was also found 
to be significantly related to higher subject-level agree-
ment rates, in line with the global performance analyses 
results which showed that PALMS can best detect vehic-
ular trips. This was notable because car ownership was 
significant in these model even after accounting for the 
primary mode grouping (driver, transit user, walker) and 
the high level of vehicle ownership in the sample.
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Overall, the results from this study showed lower 
agreement rates than previous studies [8, 25] because 
we took a more conservative approach and applied strict 
rules to assess the algorithm. However, the detailed inves-
tigation methods will provide new information and help 
developers and users to improve their future algorithms. 
Our study also has limitations. First, there is currently no 
gold standard criterion measure for travel behavior iden-
tification, and it is likely that both the PALMS algorithm 
and the travel dairy had errors and omissions. Future 
studies could be aided by the use of additional objective 
reference data (e.g., heart rate monitoring for walking 
and bicycling) to evaluate the algorithm. Second, we used 
default parameter settings in PALMS for our analyses. 
Agreement rates for active travel modes may be improved 
through careful selection of PALMS parameters.

Third, the TRAC study participants were sampled from 
the greater Seattle area, which contains pockets of high-
density development and experiences severe commute-
time traffic congestion on expressways and on arterial 
roads. The quality of individual-level GPS data might be 
better in suburban and rural areas where the configura-
tion of built environments is less complex and traffic con-
gestion is less frequent. Fourth, the TRAC sample did not 
include people with physical disabilities, which affect the 
travel mode choice. Still, anyone can suffer temporary 
physical or mental disabilities during the study period. 
Future studies may consider these confounders to better 
explain the subject-level performance of PALMS. Fifth, 
although the descriptive statistics of study participants 
showed that the sample is not biased, there is a possibility 
of self-selection in survey samples. To mitigate the prob-
lem, we applied a stratified random sampling method to 
proportionally include under-represented travel mode 
groups (e.g. public transit user). The performance of 
PALMS needs to be tested in different geographic areas 
where a higher proportion of the population uses transit 
or non-motorized modes. Such areas will likely also have 
different built environments and socio-demographics. 
Lastly, compared to previous studies, our larger sample 
still did not provide ample power for statistical modeling. 
Future studies may include a larger population.

Conclusions
The use of objectively measured data from such devices 
as GPS and accelerometers has dramatically changed 
research methods in the transportation planning and 
public health fields during the last fifteen years. Auto-
mated algorithms have enabled researchers to process 
large data sets and to identify fine-scaled and active 
travel behaviors in less time and with fewer errors. This 
study investigated the performance of PALMS, a widely 
used travel behavior identification system.

For a thorough investigation, we used multiple meth-
ods to compare PALMS outcomes with travel diary 
data. In analyses at the GPS point level, PALMS showed 
moderate agreement for trips and travel modes. Trip 
level analyses yielded moderate agreement rates for 
vehicular trips, but walking and bicycling trips had 
lower agreement rates. At the subject level, agreement 
rates were lower for the public transit user group than 
for the driver and the walker groups. It appears that 
trips taken by individuals who are primarily transit 
users are more difficult to identify: transit users take 
more walking trips and their many transit trips occur in 
densely developed areas with more traffic congestion, 
stop-and-go traffic flow, and lower quality GPS data 
due to poor reception in canyon-like settings.

PALMS appears to perform well in identifying 
vehicular trips and corresponding travel routes, indi-
cating that the algorithm can help reduce the burden 
of processing GPS data into travel behavior data. To 
enhance the overall performance of the algorithm, fur-
ther efforts are needed to identify non-motorized travel 
modes. The use of shorter measurement intervals for 
GPS and accelerometer data, as well as adjustments to 
speed thresholds suggested as defaults in the algorithm, 
may improve differentiation between walking and other 
modes. Ancillary data sources, such as heart rate moni-
toring, may help differentiate active (walking, bicycling) 
and passive (vehicular) modes. Efforts to discriminate 
between public transit and automobile trips will further 
expand the usefulness of PALMS. Geographic infor-
mation systems (GIS) data already in existence, such 
as transit routes, stops, and stations may play a strong 
role. Finally, systematic evaluation of different param-
eter settings in PALMS could lead to better detection 
of places versus trips and short-duration stops within 
trips.

PALMS is a promising tool that serves to link data cap-
turing health and transportation behaviors. Its perfor-
mance in detecting active travel modes will be improved 
with further testing of the different parameter settings. 
Also, testing and evaluating PALMS internationally in a 
range of urbanized areas where travel modes other than 
driving are common will broaden the applicability of the 
algorithm.
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