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METHODOLOGY

A multi-modal relative spatial access 
assessment approach to measure spatial 
accessibility to primary care providers
Yan Lin1*, Neng Wan2, Sagert Sheets1, Xi Gong1 and Angela Davies1

Abstract 

Two-step floating catchment area (2SFCA) methods that account for multiple transportation modes provide more 
realistic accessibility representation than single-mode methods. However, the use of the impedance coefficient in 
an impedance function (e.g., Gaussian function) introduces uncertainty to 2SFCA results. This paper proposes an 
enhancement to the multi-modal 2SFCA methods through incorporating the concept of a spatial access ratio (SPAR) 
for spatial access measurement. SPAR is the ratio of a given place’s access score to the mean of all access scores in 
the study area. An empirical study on spatial access to primary care physicians (PCPs) in the city of Albuquerque, NM, 
USA was conducted to evaluate the effectiveness of SPAR in addressing uncertainty introduced by the choice of the 
impedance coefficient in the classic Gaussian impedance function. We used ESRI StreetMap Premium and General 
Transit Specification Feed (GTFS) data to calculate the travel time to PCPs by car and bus. We first generated two 
spatial access scores—using different catchment sizes for car and bus, respectively—for each demanding population 
location: an accessibility score for car drivers and an accessibility score for bus riders. We then computed three cor-
responding spatial access ratios of the above scores for each population location. Sensitivity analysis results suggest 
that the spatial access scores vary significantly when using different impedance coefficients (p < 0.05); while SPAR 
remains stable (p = 1). Results from this paper suggest that a spatial access ratio can significantly reduce impedance 
coefficient-related uncertainties in multi-modal 2SFCA methods.
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Background
Primary health care has been a main focus of health care 
policy, provision, and research for 40 years—a focus that 
was reaffirmed by the World Health Organization in 2008 
[47]. It is a movement that has been focused on compre-
hensive, continuous, and person-centered care; often 
described in contrast to care that is narrowly specialized, 
focused on short-term results, or fragmented in its deliv-
ery [47]. Primary health care commonly takes the form of 
generalist physicians who address the four main features 
of primary care: to be the first contact for new needs; to 
provide long-term person-focused care (as opposed to 

disease-focused); to offer comprehensive care for most 
health needs; and to coordinate specialist care when 
needed [36]. As a result, primary care is associated with 
greater access to services, higher quality of care, a focus 
on prevention, early management of health problems, the 
cumulative effect of these qualities, and a reduction in 
unnecessary specialist care [36, 51].

At the population level, strong primary care is associ-
ated with better health and slower growth in health care 
spending [17], as well as lower rates of avoidable hospi-
talizations [17, 31]). In some specific examples, primary 
care, with its dimensions of continuous, coordinated, and 
comprehensive care, is considered a key element of can-
cer control (including in prevention, diagnosis, survivor-
ship, and end-of-life care) [23, 25, 32] and is associated 
with better self-rated health in people with chronic con-
ditions [11].
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Access to primary health care
Access is considered a basic tenet of primary care, par-
ticularly as it relates to first contact (between providers 
and patients) [34]. In addition, it can be considered a 
benefit of primary care [35], a measure of primary care 
[31], and a mechanism by which population health ben-
efits [36]. However, a specific definition of access and 
description of its role in primary health care has been 
elusive. It has been defined and studied as: availability 
and volume of services; geographic accessibility in terms 
of travel distance; accommodation of accessibility, such 
as appointment systems and operating hours; affordabil-
ity; acceptability and patient satisfaction; utilization, or 
actual consumption of services; and equality in access [4, 
18].

The above discussion is not limited to research on pri-
mary health care. In research on access to health care in 
general, access has been described in terms of both the 
characteristics of the health care delivery system and 
the characteristics of the population of interest. There 
has been a particular focus on access as an interaction 
or fit between the system and population (utilization of 
services) and the health outcomes that result from this 
interaction [1, 30].

Access to primary care physicians has been refined 
into a framework of potential and realized (sometimes 
“revealed”) access. Realized access includes the actual 
rates of consumption and the reported descriptions of 
care received, and can be measured objectively (utiliza-
tion) or subjectively (customer satisfaction). Potential 
access describes the organization and capabilities of the 
health care system (such as facilities, doctors, and costs) 
and the potential of the consumers (including wants, 
needs, and resources) [2, 3].

As health systems have grown more complicated, so 
have dimensions of access, with recent models account-
ing for approachability, acceptability, availability and 
accommodation, affordability, and appropriateness of 
services, as well as patients’ abilities to perceive, seek, 
reach, pay, and engage [22]. However, some common 
themes emerge across conceptions and models. Geogra-
phy, spatial configuration, and mobility are examples, as 
seen in a patient’s “ability to seek” [22]. Travel time has 
been identified as a strong predictor of satisfaction with 
accessibility and associated with opportunity cost for ser-
vice use [24, 30].

The influence of geography has been made explicit in 
some taxonomies as researchers attempt to organize 
the definitions of access. Khan and Bhardwaj [16] took 
the stages of access—potential and realized—and added 
two crosswise dimensions: spatial (geographic) and 
aspatial (social, economic, and cultural). This taxonomy 
has become a central paradigm in geographic studies of 

healthcare access, as it makes clear the strengths and lim-
itations of available data and the analyses performed [9, 
15, 16].

Potential spatial access: previous approaches
Studies of “potential spatial” access to health care 
resources have maintained a focus on the spatial interac-
tion of providers and populations, particularly with grav-
ity models, which model the potential spatial interaction 
between supply and demand and focus on how distance 
affects the attraction of a supply or service and the cost 
for those who demand it [9]. These models are more 
sophisticated measures of access than previous measures 
of regional availability, which were ratios of health care 
resources to populations within a predefined regional 
unit (e.g., census tract) [26].

Single mode approaches
Floating catchment area models (FCA) are a relatively 
recent development in measures of potential spatial 
access. In particular, the two-step floating catchment area 
model (2SFCA) (e.g., [27, 45]) has been widely used due 
to its ability to assess potential spatial access where real-
ized access information is unavailable, its relative ease of 
implementation, and its conceptual completeness [26]. 
“Catchment area” refers to both the service area of a 
resource or supply point and the area of opportunities for 
a population center, both measured in travel time. Catch-
ment size, unlike regional or administrative units, may be 
adjusted for the attraction of the resource or the abilities 
of the population; their boundaries “float.”

However, this model is limited in its ability to account 
for distance decay. All populations within the service 
area are assigned an equal access score, regardless of dif-
ferences in proximity or travel time to a service. More 
recent permutations of 2SFCA models have addressed 
this weakness in different ways, and the enhanced two-
step floating catchment area method (E2SFCA) was one 
of the first to explicitly employ a travel impedance func-
tion. Catchments are divided into travel-time subzones 
and opportunities within each subzone are weighted by 
a mathematical function of travel impedance. In other 
words, populations near a resource may receive a weight 
near 1, while populations near the edges of the catch-
ment receive a weight closer to 0. The complete process 
of this model is discussed in the “Review of E2SFCA and 
the relative spatial access assessment method” section.

Two limitations of concern have emerged for the 
E2SFCA method: (1) high variations in access scores, 
introducing uncertainty as to whether scores are attrib-
uted to the choice of the impedance coefficient rather 
than the configuration of the system, and (2) it only 
allows for one mode of transportation, and studies have 
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generally used personal automobiles to establish travel 
times. The first concern has been addressed, in part, by 
the introduction of a spatial access ratio (SPAR), that nor-
malizes the access scores (spatial access indices, or SPAI) 
by the average score of the area of interest [42]. SPAR is 
discussed in greater detail in the “Review of E2SFCA and 
the relative spatial access assessment method” section. 
The current research seeks to address both concerns, and 
here we present a review of other studies that have exam-
ined multi-modal access.

Multi‑modal approaches
Multi-modal approaches are methods that account for 
differences in modes of transportation. Privately owned 
automobiles (cars) and public transportation, for exam-
ple, have been shown to have different accessibility indi-
ces. In other words, different modes of transportation 
allow their users differing levels of access to resources 
[20]. This finding—particularly that cars provide greater 
spatial access than public transportation—has held true 
across computational models [33]. Much of the research 
on accessibility variations in transport modes has been 
undertaken in the aim of studying sustainable develop-
ment and equitable access, and the gap has been found 
to persist even as reforms are implemented to improve 
public transit [5].

Studies on multi-modal accessibility are scarce com-
pared with those on single-modal accessibility and focus 
primarily on measuring and comparing accessibility by 
different transportation modes to places that represent 
health behaviors. For example, a study of park access 
found that in addition to public transit, bicycle and walk-
ing modes reduce accessibility compared to cars [50]. In 
another case, accessibility to supermarkets was higher 
for cars than public transit, and that accessibility scores 
for public transport had greater variability [48]. How-
ever, a study of access to healthy food found that public 
transport offers greater accessibility to some resources at 
certain times of day [38]. A statistical analysis of trans-
portation modes and cancer screening in England found 
that car ownership was strongly associated with screen-
ings for breast and cervical cancer, while public transit 
use was inversely associated with breast cancer screen-
ings [44]. Finally, Higgs et  al. [12] used single-mode 
E2SFCA scores from independent transportation net-
works (car and bus) as inputs in a multivariate analysis of 
general practitioner access and observed that bus scores 
were lower than car [12]. However, these studies were 
still based on single-modal methods to measure spatial 
access under each transportation mode separately.

Several studies developed new multi-modal meth-
ods using the FCA framework with multiple transpor-
tation modes. Mao and Nekorchuk [28] investigated 

accessibility to healthcare in Florida. With the 2SFCA 
model as a foundation, they added a multi-modal ele-
ment to address the assumption that all populations 
within a catchment have equal access. Populations were 
divided into subpopulations based on census data on 
vehicle ownership at the block group level and multiple 
catchments were created at each healthcare location, one 
per transportation mode. Weights were applied based 
on the sizes of the subpopulations in their service areas. 
The analysis was run for the entire state, and they found 
that an unmodified 2SFCA resulted in higher accessi-
bility scores than the multi-modal method. This model 
incorporated both travel modes into one score rather 
than comparing car and bus scores. Bus routes were not 
used; as a proxy, while buses travelled the same network 
as cars, they did so at a slower speed [28].

Dony et  al. [7] researched access to parks in Meck-
lenburg County, North Carolina and introduced a var-
iable-width floating catchment area (VFCA), in which 
catchment size varies with a measure of park attractive-
ness and with a travel mode coefficient. In the modified 
second step, park-to-population ratios were weighted 
by the distance from the population to the park. Spatial 
accessibility scores were calculated once per mode of 
transport using a Google Maps API, which makes some 
consideration of the best network or path for each mode 
(e.g., directing cyclists to designated bike paths). In their 
case study, car, bus, bicycle, and walking were compared, 
and the VFCA method was compared to 2SFCA scores 
derived with fixed catchment sizes. The VFCA scores 
showed greater variability and walking resulted in low 
scores across models [7].

Langford et  al. [21] introduced modifications to the 
2SFCA model to produce separate accessibility scores for 
each mode and demonstrated the model with a case study 
of access to primary health care in South Wales, UK. The 
researchers limited bus access to bus stops and used an 
independent bus route network, and the modified model 
allows for additional unique networks. A single access 
score was still generated for each supply location, but it 
was based on the combined population using the mod-
eled travel modes. In the second step, a separate score 
was generated for each mode at each population location. 
Subpopulations were established by census data on car 
ownership. They compared car-only E2SFCA scores to 
multi-modal scores and found that bus riders experience 
much lower accessibility. This also meant that car access 
scores in the multi-modal model were higher than in the 
single-mode model.

Xing et al. [49] also investigated access to parks with a 
multi-modal 2SFCA model and a case study in Wuhan, 
China. Populations were assigned a travel mode based on 
their proximity to parks and travel modes were assigned 
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different speeds on one network to determine travel time. 
This produced an integrated accessibility score that was 
compared to single-mode 2SFCA scores [49].

Finally, Tao et  al. [37] employed two independent 
online map APIs for different travel modes to measure 
accessibility to healthcare services in Shenzhen, China. 
The two Baidu Map services were used to estimate car 
travel times and public transit travel times separately, and 
the APIs restrict public transit to designated routes. Their 
model allowed for the calculation of both integrated and 
mode-specific accessibility scores, and comparisons to 
the conventional, single-mode 2SFCA showed that the 
multi-modal method revealed more disparities in access. 
Specifically, transit-reliant populations were more disad-
vantaged [37].

These studies are distinguished by their use of net-
works or travel-speed proxies to model differences in 
travel modes. Two studies used the same networks for 
all modes, differentiating between them by adjusting the 
speed for each mode, which is recognized as a limitation 
since many modes of travel have restricted or unique 
routes, such as bus routes or bike paths [28, 49]. Two 
studies utilized online mapping services to address this 
limitation and route travelers on an appropriate network 
for their travel mode [7, 37], while one used two inde-
pendent networks in a desktop GIS environment [21].

Although multi-modal two-step floating catchment 
area methods provide more realistic accessibility rep-
resentation than single-modal methods, the use of the 
impedance coefficient in the weighting function (e.g. 
Gaussian function) and the associated variations in the 
accessibility scores remains a source of uncertainty. 
Uncertainty is a state of limited knowledge which causes 
difficulties in exactly describing an outcome or more than 
one outcome. In the two-step floating catchment area 
methods, uncertainties arise due to the lack of knowledge 
about impedance coefficients, which lead to difficulties in 
exactly quantifying the spatial access scores. This paper 
therefore proposes an enhancement to the multi-modal 
two-step floating catchment area methods through incor-
porating the spatial access ratio (SPAR) for spatial access 
measurement. An empirical study on spatial access to 
primary care physicians in the city of Albuquerque, NM, 
USA was conducted to evaluate the effectiveness of SPAR 
in addressing uncertainty introduced by the use of differ-
ent impedance coefficients in the classic Gaussian imped-
ance function.

Methods
We propose our multi-modal relative spatial access 
assessment approach based on the E2SFCA method and 
the relative spatial access assessment method.

Review of E2SFCA and the relative spatial access 
assessment method
There are two steps in the E2SFCA method. The travel-
time measurements may vary by resource or study area, 
but the original method uses the common 30-min catch-
ment. In the first step, the model defines a 30-min travel-
time zone (catchment) for each healthcare location i, 
and divides the travel-time zone into three subzones Dt 
(t = 1, 2, 3): less than 10 min, between 10 and 20 min, and 
between 20 and 30 min. Then, it computes the supply-to-
demand ratio Ri for each healthcare location i. The first 
step is also expressed as:

where Ci represents the capacity of health care supply at 
location i, Pk represents the population size of any pop-
ulation location k within subzone Dt, dki indicates the 
shortest travel time between i and population location k, 
and Wt represents the impedance weight for Dt based on 
the Gaussian function. In addition to the Gaussian func-
tion, the inverse power function and exponential func-
tion have been used in spatial interaction research [19]. 
However, the Gaussian function is preferred in gravity 
models (including the E2SFCA model) because it com-
pares most favorably with realized access data [10, 14, 19, 
46]. Choice of impedance functions and coefficients is 
discussed in the “Sensitivity analysis” section.

In the second step, the model sums the weighted 
supply-to-demand ratio of all the healthcare locations i 
within the 30-min travel-time zone of population loca-
tion j. The second step is expressed as:

where AF
j  is the spatial access index for any population 

location j, Ri represents the supply-to-demand ratio for 
any healthcare location i within the 30-min travel-time 
zone of each population location j, and ji represents the 
shortest travel time between j and i.

The uncertainty produced by the different impedance 
coefficients in the E2SFCA method was noted and a rela-
tive spatial access measurement method [42] was devel-
oped to address this issue. In the relative spatial access 
method, the concept of spatial access ratio (SPAR) was 
introduced to describe levels of relative spatial access 
based on the E2SFCA method. Specifically, it first com-
putes a spatial access index (SPAI; indicated by AF

j  in 
Eq.  2) for each population location using the E2SFCA 

(1)Ri =
Ci∑

k∈{dki∈Dt} PkWt

(2)
AF
j =

∑

i∈{dji∈Dt}

RiWt
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method, then calculates a ratio of SPAI in each popula-
tion location to the average SPAI of the entire region to 
represent the level of relative spatial access. Sensitivity 
analysis results suggest that SPAR is stable and not sensi-
tive to the choice of impedance coefficient while the SPAI 
varies significantly under different coefficients.

Multi‑modal relative spatial access assessment approach
Our proposed approach is implemented in the following 
3 steps:

Step 1: Calculate the supply-to-demand ratio for each 
PCP location: 

where 
∑

k∈dki,Mn
≤dn,Mn

Pk ,Mn
∗Wki =

∑
k∈{dki,Mn

∈D1,Mn}

Pk ,Mn
∗WZ1

+
∑

k∈{dki,Mn
∈D2,Mn}

Pk ,Mn
∗WZ2

+ · · ·+

∑
k∈{dki,Mn

∈Dn,Mn}
Pk ,Mn

∗WZn
 and where Ri is the sup-

ply-to-demand ratio for each healthcare location i, the 
denominator is the demand population, composed of 
populations under different transportation modes. Ci 
represents the capacity of health care supply at location 
i, Pk ,Mn represents the population size of any popula-
tion location k within the travel mode Mn catchment of 
healthcare location i defined by dki,Mn

≤ dn,Mn , where 
dki,Mn

 is the travel time between population location k 
and healthcare location i under travel mode Mn , and 
dn,Mn is the specified threshold travel time for travel mode 
Mn . Wki represents the impedance weight (how travel 
cost impacts accessibility) based on the Gaussian func-
tion Wki = e−d2/β , whereβ is an impedance coefficient. 
Zn represents subzone n; each subzone is defined by a 
threshold travel time Dn and weights are equal within 
each subzone. The mean travel time in each subzone was 
used to calculate the respective weight.

Step 2: Calculate the travel mode-specific spatial access 
index (SPAI) and an integrated SPAI for each population 
location:

(3)Ri =
Ci∑

k∈dki,M1
≤d1,M1

Pk ,M1
∗Wki +

∑
k∈dki,M2

≤d2,M2
Pk ,M2

∗Wki + · · · +
∑

k∈dki,Mn≤dn,Mn
Pk ,Mn

∗Wki

(4)

Aj = Aj,M1
+ Aj,M2

+ · · · + Aj,Mn

=
∑

i∈dji,M1
≤d1,M1

Ri ∗Wji +
∑

i∈dji,M2
≤d2,M2

Ri ∗Wji

+ · · · +
∑

i∈dji,Mn≤dn,Mn

Ri ∗Wji

Aj,Mn =
∑

i∈dji,Mn≤dn,Mn

Ri ∗Wji

where∑

i∈dji,Mn≤dn,Mn

Ri ∗Wji =
∑

k∈{dki,Mn∈D1,Mn}

Ri ∗WZ1

+
∑

k∈{dki,Mn∈D2,Mn}

Ri ∗WZ2

+ · · · +
∑

k∈{dki,Mn∈Dn,Mn}

Ri ∗WZn

and where Aj is the integrated spatial access index (SPAI) 
that includes all travel modes for any population location 
j , Ri represents the supply-to-demand ratio calculated in 
step 1 for any healthcare location i within the travel-time 
zone of each population location j under travel mode 
Mn . Aj,Mn is the SPAI for any population location j under 
travel mode Mn . WZn represents weight in subzone n. 
This formula was adapted from a previous study [21].

We calculated results for car drivers and bus travel-
ers separately, but these are indeed multi-modal results 
because they reflect that populations using different 
modes have different amounts of potential access to a 
resource. That is, the supply of PCPs is limited, so if car 
drivers have greater accessibility, they are reducing the 
supply (and therefore the accessibility) of bus riders. Or, 
stated more appropriately, car users have the potential to 
access a greater portion of the supply than do bus riders.

In our case study, step 2 (Eq. 4) becomes the following:

where

and

(5)Aj = Aj,M1 + Aj,M2 = Aj,car + Aj,bus

Aj,car =
∑

k∈{dki,car∈(0−10)}

Ri ∗WZ1

+
∑

k∈{dki,car∈(10−20)}

Ri ∗WZ2

+
∑

k∈{dki,car∈(20−30)}

Ri ∗WZ3

Aj,bus =
∑

k∈{dki,bus∈(0−10)}

Ri ∗WZ1
+

∑

k∈{dki,bus∈(10−20)}

Ri ∗WZ2

+
∑

k∈{dki,bus∈(20−30)}

Ri ∗WZ3
+

∑

k∈{dki,bus∈(30−60)}

Ri ∗WZ4
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and where Aj,car and Aj,bus (or Aj,M1 and Aj,M2 , respec-
tively) are mode-specific SPAI scores for subpopulations 
using each mode (car, bus), calculated under multi-modal 
access conditions, and Aj is the integrated access score 
for the whole population and both modes. The catchment 
size for cars, or d1,M1 , is set at 30 min and the catchment 
size for bus travel, or d2,M2 , is set at 60 min. Three sub-
zones (0 to 10 min, 10 to 20 min, and 20 to 30 min) are 
defined for car travelers. Four subzones (0 to 10 min, 10 
to 20 min, 20 to 30 min, and 30 to 60 min) are defined for 
bus riders. Weight calculations for the subzones are dis-
cussed in the “Computing access index and ratio” section.

Existing research has discussed the uncertainty 
brought on by the subjectivity of choosing the impedance 
coefficient β [19, 42]. Wan et al. [42] developed a relative 
spatial assessment approach to address this limitation, 
which calculates a ratio between the spatial access index 
and the average spatial access index as the spatial access 
ratio (SPAR).

Step 3: Compute the spatial access ratio (SPAR) for 
each population location:

where Sj is the integrated SPAR, Aj is the integrated SPAI 
derived from step 2, Ā is the average SPAI in the study 
area, Sj,Mn is the SPAR for any population location j under 
travel mode Mn , Aj,Mn is the SPAI for any population 
location under travel mode Mn , and ĀMn is the average 
SPAI under travel mode Mn in the study area.

SPAR has been proven to be more stable than the origi-
nal SPAI when using different impedance coefficients [6, 
42]. The present study expands on the concept and com-
putes the spatial access ratio for both the combined spa-
tial access index for all travel modes and separate spatial 
access index for single travel mode.

Case study
The Albuquerque metropolitan planning area was used 
as the study area of this study (Fig.  1), comprising Ber-
nalillo, Sandoval, and Valencia Counties in central New 
Mexico, USA. Multi-modal E2SFCA results can identify 
areas with low spatial access to primary care, which pro-
vides information for New Mexico’s Mid-Region Coun-
cil of Governments (MRCOG) for future transportation 
planning. The total population of this area was 868,763 
as of 2015. The public transit lines (bus) are in the City of 
Albuquerque, near the center of the study area.

(6)
Sj = Aj/Ā

Sj,Mn = Aj,Mn/ĀMn

Data
Data used in this study included: Primary care physician 
(PCP) location data, population counts, census block 
group boundaries, transportation network data, and 
national household travel survey data.

PCP data were obtained from the National Provider 
Identifier (NPI) records [29]. We selected NPI records 
that indicate a specialty of family practice, family medi-
cine, general practice, general pediatrics, or general inter-
nal medicine. Because of well-known data limitations in 
NPI data (e.g., incorrect practicing addresses), we also 
collected data on family practice physicians from the 
Infogroup—an Esri business partner. The data was pur-
chased by the New Mexico Department of Information 
Technology (DOIT) who provided it to the New Mexico 
Community Data Collaborative (NMCDC), managed 
by the New Mexico Department of Health (NMDOH) 
[13]. We first merged the NPI and Infogroup databases 
and removed duplicate records. We then conducted a 
data validation process to validate or correct the practic-
ing address of PCPs through different methods, such as 
Google search, phone calls, and office visits. There are 
1166 PCPs at 293 practicing addresses.

Population data from 2015 in 543 census block groups 
was obtained from the American Community Survey 
[40], including the total population and the percentage of 
people without a vehicle. The average population in each 
block group is approximately 1600. We then calculated 
the population subsets of people without a vehicle and 
those with at least one vehicle as a proxy of the popula-
tion size for bus riders and car drivers. National house-
hold travel survey data was used to estimate the average 
travel time to PCPs by bus (52  min) and car (25  min) 
based on the average travel time for medical service 
related trips in New Mexico [41].

We only considered car and bus transportation modes 
in the present study because they are the two primary 
transportation modes in the study area. Theoretically, 
our model could include more than two transportation 
modes if data are available. No subway/train services are 
available within the metro area and walking is not practi-
cal in the study area to access PCPs. The bus mode is a 
combination of walking and bus riding.

We obtained ESRI premium streets network dataset 
to calculate travel time by car. We used General Transit 
Feed Specification (GTFS) data for ABQ Ride from Tran-
sitfeeds.com, which collects GTFS datasets from around 
the world [39] and street network data to calculate travel 
time by bus.
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Transportation network models for each transportation 
mode
Car
To model travel by car, we computed an origin-destination 
matrix from population weighted block group centroids 
to PCP locations using the ESRI StreetMap Premium 
network, which accounts for historic traffic. Population 

weighted block group centroids were generated based on 
census blocks with population attributes using the Mean 
Center tool in ArcMap (with block group ID as the case 
field (or aggregation boundary) and population as the 
weight field). Speed limit data and street lengths in the 
street dataset were used to compute the travel time of 
each street segment, which was used as the impedance 

Fig. 1 The study area of the Albuquerque Metropolitan Area in Central New Mexico
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in the street network. We modeled the connectivity of 
the street network, including one-way streets, turns, and 
overpasses/tunnels. The analysis was conducted using 
ArcGIS 10.4 and the Network Analyst extension.

Bus
The GTFS data contains transit lines, bus stops, calendar 
information, as well as the arrival times at and departure 
times from bus stops, which are necessary to create a 
transit line network. ESRI streets data were also included 
to model pedestrians who walk between transit stops and 
their origins or destinations or to walk between nearby 
stops for transfers. We first generated feature classes for 
transit lines and stops and an SQL database of the sched-
ules using the GTFS data. Then we created connector 
features between the transit lines and stops and streets 
data in the following steps: 1) A copy of transit stops was 
created and were snapped to the streets; 2) A line feature 
was created to connect the true location of each transit 
stop and its snapped location; and 3) Vertices were cre-
ated on the street lines at the snapped location, which 
is necessary for establishing connectivity in the network 
dataset (Fig. 2).

A multi-modal network dataset was created using 
street lines, transit lines, transit stops, snapped locations 

for transit stops, and the connectors described above. 
A travel time cost attribute was created in the network 
dataset based on various sources. For example, travel 
time for streets was defined based on walking speed (3 
miles per hour) and travel time for transit lines was based 
on the GTFS schedule. The analysis was conducted in 
ArcGIS 10.4 with the Add GTFS to a Network Dataset 
tool [8]. We created an origin-destination matrix using 
the multi-modal network dataset. Since specific dates 
were required to solve the network analysis, we ran the 
origin-destination matrix for two consecutive weeks 
(Monday–Friday) on an hourly basis (8 am–5  pm). The 
average travel time for each origin–destination pair was 
used in the spatial access measurement.

Computing access index and ratio
A total of 3 groups of SPAI and SPAR were computed 
for each census block group using the proposed method, 
including spatial access for car drivers, bus riders, and 
integrated access. Based on the National Household 
Travel Survey data, we used 30 and 60 min as the thresh-
olds (catchment sizes) for car and bus, respectively. 
Gaussian weights for car drivers were assigned to three 
subzones (0–10 min, 10–20 min, and 20–30  min). The 
mean travel times in each subzone (5, 15, and 25  min) 

Fig. 2 Multi-modal network
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were used as d to calculate the weight. Weights for bus 
riders were assigned to four subzones (0–10 min, 10–20 
min, 20–30 min, and 30–60 min). The mean travel time 
in each subzone (5, 15, 25, and 45 min) was used as d to 
calculate the respective weight.

Sensitivity analysis
In order to evaluate how results would be sensitive to 
the choice of the impedance coefficient β, we computed 
a series of SPAI and SPAR scores using different coef-
ficients. Realized data should theoretically be used to 
calibrate the impedance coefficient by fitting the curve 
to known travel behavior, but such information is often 
unavailable [19, 26]. In the absence of realized data, mod-
els of potential access should not use arbitrarily assigned 
impedance coefficients but should assign a coefficient 
based on a critical weight as the function approaches 0 
[19]. The critical value is usually set at or near 0.1 or 0.01 
for the outermost sub-zone [19, 42, 43, 46]).

We chose 0.01 as the lowest outermost target weight; 
it produced a wider range of weight values across catch-
ments at the lowest coefficient and allowed us to include 
weights near 0.1 in the sensitivity analysis. We identi-
fied appropriate coefficients between 140 and 320 for car 
drivers and coefficients between 440 and 1040 for bus 
riders. The minimum coefficient was based on the critical 
value of 0.01 and the maximum coefficient was defined as 
the value where the Gaussian curve started to level off. A 
total of 13 equal-interval coefficients each were used for 
car (β = 140, 155, 170, 185, 200, 215, 230, 245, 260, 275, 
290, 305, 320) and bus (β = 440, 490, 540, 590, 640, 690, 
740, 790, 840, 890, 940, 990, 1040). Since the denomi-
nator in Ri in Step 1 in our method (see Eq. 3) involves 
weighted car travelers and bus riders, a coefficient is 
required for each transportation mode. We simulated 
169 combinations of car and bus coefficients in the sen-
sitivity analysis, generating 169 SPAI and SPAR scores as 
results. The model implementation and sensitivity analy-
sis were conducted in ArcPy.

We used one-way ANOVA to test whether there were 
significant differences in the SPAI and SPAR when differ-
ent impedance coefficients (β) were used. For SPAI, three 
null hypotheses were tested: for car, bus travel, and the 
integrated modes. For car, we first tested the following 
null hypothesis:

Then we tested the following null hypothesis for each 
coefficient (140 ≤ β ≤ 320) for car:

(7)
H0:ASPAI ,β=140 = ASPAI ,β=155 = ASPAI ,β=170

= · · · = ASPAI ,β=320.

(8)
H0:ASPAI ,β=440 = ASPAI ,β=490 = ASPAI ,β=540

= · · · = ASPAI ,β=1040.

For bus, we first tested the following null hypothesis:

Then we tested the following null hypothesis for each 
coefficient (440 ≤ β ≤ 1040) for bus:

For the integrated SPAI, we first tested the following 
null hypothesis:

Then we tested the following null hypothesis for each 
coefficient (140 ≤ β ≤ 320):

Similarly, we conducted three tests for SPAR. For car, 
we first tested the following null hypothesis:

Then we tested the following null hypothesis for each 
coefficient (140 ≤ β ≤ 320) for car:

For bus, we first tested the following null hypothesis:

Then we tested the following null hypothesis for each 
coefficient (440 ≤ β ≤ 1040) for bus:

For the integrated SPAI, we first tested the following 
null hypothesis:

Then we tested the following null hypothesis for each 
coefficient (140 ≤ β ≤ 320):

Results
Both car and bus accessibility were assessed for thirteen 
coefficients, but the ranges for each mode were different 
due to the variation in the number of subzones and the 
travel time of the outermost sub-zone. The coefficients, 

(9)
H0:ASPAI ,β=440 = ASPAI ,β=490 = ASPAI ,β=540

= · · · = ASPAI ,β=1040.

(10)
H0:ASPAI ,β=140 = ASPAI ,β=155 = ASPAI ,β=170

= · · · = ASPAI ,β=320.

(11)
H0:ASPAI ,β=140 = ASPAI ,β=155 = ASPAI ,β=170

= · · · = ASPAI ,β=320.

(12)
H0:ASPAI ,β=440 = ASPAI ,β=490 = ASPAI ,β=540

= · · · = ASPAI ,β=1040.

(13)
H0:ASPAR,β=140 = ASPAR,β=155 = ASPAR,β=170

= · · · = ASPAR,β=320.

(14)
H0:ASPAR,β=440 = ASPAR,β=490 = ASPAR,β=540

= · · · = ASPAR,β=1040.

(15)
H0:ASPAR,β=440 = ASPAR,β=490 = ASPAR,β=540

= · · · = ASPAR,β=1040

(16)
H0:ASPAR,β=140 = ASPAR,β=155 = ASPAR,β=170

= · · · = ASPAR,β=320

(17)
H0:ASPAR,β=140 = ASPAR,β=155 = ASPAR,β=170

= · · · = ASPAR,β=320.

(18)
H0:ASPAR,β=440 = ASPAR,β=490 = ASPAR,β=540

= · · · = ASPAR,β=1040.
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with which mode they were used, and the weights they 
produced in each sub-zone are detailed in Table  1. 
Impedance coefficients were calculated based on the tar-
get critical weight (0.01) at the mean travel time for the 
outermost subzone (25 min for car; 45 min for bus). The 
impedance coefficient was then used to calculate weights 
for the remaining sub-zones at their respective mean 
travel times.

Lower coefficients generally produced greater ranges 
in weights (0.935 between sub-zones 1 and 4 at β = 440), 
and the range decreased as the coefficient value increased 
(0.833 between sub-zone 1 and sub-zone 4 for bus at 
β = 1040). The same pattern is seen in the weights for 
car travel, although the change is much less pronounced 
(0.825 between sub-zone 1 and sub-zone 3 at β = 140; 
0.783 at β = 320). In fact, the range in weights for car 
travel is greatest at β = 185 (0.840 between sub-zones 1 
and 3). Based on these weights, we should expect two 
things: 1) car accessibility scores to change less than bus 

scores as coefficients increase; and 2) both travel modes 
should produce less variability in scores as coefficients 
increase.

Car SPAI and SPAR
SPAI and SPAR scores were calculated for car-based 
travel. Table  2 lists descriptive statistics for the results, 
including the minimum, maximum, mean, standard devi-
ation, and coefficient of variation (CV; standard deviation 
divided by the mean). The lowest impedance coefficient 
(β = 140) produced the highest maximum, mean, and 
coefficient of variation, reflecting that, as expected, the 
increasing coefficients created a levelling effect, reducing 
variation in accessibility scores and increasing accessibil-
ity across the study area. This pattern is also seen in the 
SPAR scores, but as is expected with SPAR, the variation 
is much less pronounced. Since SPAR is a ratio of a given 
place’s SPAI score to the average of all SPAI scores in the 
region, when all SPAR scores are averaged, the mean of 

Table 1 Distance impedance coefficients

Distance impedance 
coefficient β

Sub‑zone 1 (0–10 min); 
weight at 5 min.

Sub‑zone 2 (10–20 min); 
weight at 15 min

Sub‑zone 3 (20–30 min); 
weight at 25 min

Sub‑zone 4 (30–60 min; 
bus only); weight at 45 
min

Car

 140 0.836 0.200 0.012

 155 0.851 0.234 0.018

 170 0.863 0.266 0.025

 185 0.874 0.296 0.034

 200 0.882 0.325 0.044

 215 0.890 0.351 0.055

 230 0.897 0.376 0.066

 245 0.903 0.399 0.078

 260 0.908 0.421 0.090

 275 0.913 0.441 0.103

 290 0.917 0.460 0.116

 305 0.921 0.478 0.129

 320 0.925 0.495 0.142

Bus

 440 0.945 0.600 0.242 0.010

 490 0.950 0.632 0.279 0.016

 540 0.955 0.659 0.314 0.024

 590 0.959 0.683 0.347 0.032

 640 0.962 0.704 0.377 0.042

 690 0.964 0.722 0.404 0.053

 740 0.967 0.738 0.430 0.065

 790 0.969 0.752 0.453 0.077

 840 0.971 0.765 0.475 0.090

 890 0.972 0.777 0.495 0.103

 940 0.974 0.787 0.514 0.116

 990 0.975 0.797 0.532 0.129

 1040 0.976 0.805 0.548 0.143
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all SPARs is always 1.0 and the variation of SPAR is small. 
More details about SPAR can be found elsewhere [42]. 
The results of the sensitivity assessment are discussed 
later in this section.

Figures  3 and 4 show the mapped results and geo-
graphic distribution of SPAI and SPAR scores respec-
tively based on selected coefficients. On both sets of 
maps, scores are binned into six classes. For SPAI (Fig. 3), 
the lowest class includes all scores less than 0.50, and 
each subsequent class graduates by an equal interval of 
0.50 until the fifth class, which ranges from 2.01 to 3.00, 
and then the sixth class includes all scores above 3.00. For 
SPAR (Fig. 4), the six classes are distributed similarly, but 
graduate by values of 0.25 until the fifth class, ranging 
from 1.01 to 1.50, and then the sixth class, for all scores 
above 1.50. 

Across all maps in Fig.  3, higher scores are concen-
trated in the center of the study area, where major inter-
states intersect and more facilities are located. Increasing 
the coefficient increases the scores in outer parts of the 
study area and lowers the scores in the center. This is 
due to the populations in outer areas being modeled as 
exerting greater demand (via greater access) on the sup-
ply of primary care physicians, reducing the supply 
that is exclusive to the populations in the center of the 
study area. Similar patterns are evident in Fig. 4, but the 
changes are less pronounced, and the stabilizing effect of 
SPAR across coefficients is noticeable.

Bus SPAI and SPAR
SPAI and SPAR were calculated for bus-based travel 
to primary care physicians in the study area. Table  3 
includes descriptive statistics for the bus SPAI and SPAR 

scores. In contrast to car scores, the lowest coefficient 
for bus produced the lowest scores which increased as 
the coefficient increased. Similar to car scores, the coef-
ficient of variation decreased as the coefficient increased, 
reflecting the steeper fall of the curve as travel time 
increases and the larger difference in weights across sub-
zones. The SPAI scores for bus are considerably lower 
than the car scores. Although the bus SPAR scores are 
more consistent across different coefficients, they show 
the dramatic extent of the heterogeneity of the scores 
within a single coefficient: the maximum scores show 
that some areas have over sixteen times the average 
access. This is likely due to outer regions of the study area 
having very limited or no accessibility by bus within the 
threshold travel time.

These observations are reflected in the geographic dis-
tribution in the mapped results (Figs. 5, 6). The bus SPAI 
scores (Fig. 5) were binned into six classes: less than 0.01, 
0.01–0.02, 0.02–0.05, 0.05–0.10, 0.11–0.25, and greater 
than 0.25. The highest scores are in the center of the study 
area, where bus travel options are the greatest. How-
ever, the high score areas include noticeably fewer block 
groups than in the car analysis. The variation as the coef-
ficients increase is apparent, with the east and southeast 
regions of the study area gaining the most accessibility.

Figure  6 presents the spatial distributions of SPAR 
scores, also binned into six classes: less than 0.10, 0.10–
0.25, 0.25–0.50, 0.50–1.00, 1.00–2.00, and greater than 
2.00. While the south-center of the study area loses some 
accessibility as the coefficients increase, the SPAR scores 
overall show more stable results. However, it is clear that 
bus travel greatly limits accessibility outside the center 

Table 2 Descriptive statistics of Spatial Access Index and Spatial Access Ratio for car travel

a Coefficient of variation

β Car SPAI  (10−3) Car SPAR

Min Max Mean SD CVa Min Max Mean SD CVa

140 0.000 4.570 1.667 1.155 0.693 0.000 2.731 1.000 0.693 0.693

155 0.001 4.270 1.652 1.085 0.657 0.000 2.576 1.000 0.657 0.657

170 0.001 4.025 1.639 1.029 0.628 0.000 2.448 1.000 0.628 0.628

185 0.001 3.822 1.628 0.982 0.603 0.001 2.341 1.000 0.603 0.603

200 0.001 3.652 1.619 0.943 0.583 0.001 2.250 1.000 0.583 0.583

215 0.001 3.507 1.610 0.910 0.565 0.001 2.173 1.000 0.565 0.565

230 0.001 3.383 1.602 0.880 0.549 0.001 2.106 1.000 0.549 0.549

245 0.002 3.275 1.595 0.855 0.536 0.001 2.048 1.000 0.536 0.536

260 0.002 3.180 1.589 0.832 0.524 0.001 2.047 1.000 0.524 0.524

275 0.002 3.097 1.583 0.812 0.513 0.001 1.952 1.000 0.513 0.513

290 0.002 3.022 1.578 0.793 0.503 0.001 1.912 1.000 0.503 0.503

305 0.002 2.956 1.573 0.777 0.494 0.001 1.875 1.000 0.494 0.494

320 0.002 2.896 1.569 0.761 0.485 0.001 1.843 1.000 0.485 0.485
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of the study area and limits the populations’ abilities to 
exert demand on the supply of physicians.

Integrated SPAI and SPAR
Finally, integrated SPAI and SPAR scores were calculated, 
representing combined access scores for all populations 
within a census block. Table  4 lists descriptive statis-
tics for the results, which are itemized by the car and 
bus coefficients. For example, for the row of β car = 140, 
the statistics describe all combinations of bus coeffi-
cients (from β car = 140, β bus = 440 to β car = 140, β 
bus = 1040). In these integrated scenarios, increasing 
the car-mode impedance coefficient ( β ) increases the 
minimum scores, but decreases the maximum, mean, 
and  standard deviation, reflecting the homogenizing 
effect seen in the car-mode SPAI results. Bus-mode inte-
grated SPAI, on the other hand, maintains the opposite 
pattern, as seen in the previous bus-mode results. The 
maximum, mean, standard deviation, and coefficient 
of variation all increase as bus impedance coefficients 

increase. Car- and bus-mode SPAR results show lower 
maximum scores and standard deviations that are equal 
to the coefficient of variation.

Figures  7 and 8 present the mapped scores for inte-
grated SPAI and integrated SPAR, respectively. Figure  7 
shows that the integrated method does not change the 
general pattern of spatial distribution, with high scores 
in the center of the study area and low scores outside 
the most urban areas. In both figures, both car and bus 
impedance coefficients increase incrementally from top 
left to bottom right. The top left map has the lowest coef-
ficient for each mode, while the bottom right features the 
highest coefficient for each mode. As coefficients increase 
for SPAI, the center areas lose access while the periphery 
gains, leading to a homogenizing effect within the most 
urban areas. However, the SPAR scores again remain 
more stable, with the center of the urban area featuring a 
large patch of high scores regardless of coefficient.

Fig. 3 Spatial distribution of Spatial Access Index Scores for car travel in the study area
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Fig. 4 Spatial distributions of Spatial Access Ratio Scores for car travel in the study area

Table 3 Descriptive Statistics of Spatial Access Index and Spatial Access Ratio for Bus Travel

a Coefficient of variation

β Bus SPAI  (10−3) Bus SPAR

Min Max Mean SD CVa Min Max Mean SD CVa

440 0.000 0.472 0.019 0.041 2.138 0.000 16.782 1.000 2.138 2.138

490 0.000 0.512 0.024 0.047 1.954 0.000 14.494 1.000 1.954 1.954

540 0.000 0.552 0.030 0.054 1.804 0.000 12.681 1.000 1.804 1.804

590 0.000 0.591 0.036 0.061 1.684 0.000 11.250 1.000 1.684 1.684

640 0.000 0.630 0.043 0.068 1.591 0.000 10.119 1.000 1.591 1.591

690 0.000 0.669 0.050 0.076 1.517 0.000 9.218 1.000 1.517 1.517

740 0.000 0.707 0.057 0.084 1.460 0.000 8.493 1.000 1.460 1.460

790 0.000 0.746 0.065 0.092 1.414 0.000 7.904 1.000 1.414 1.414

840 0.000 0.784 0.072 0.100 1.383 0.000 7.436 1.000 1.383 1.383

890 0.000 0.821 0.081 0.109 1.348 0.000 7.018 1.000 1.348 1.348

940 0.000 0.858 0.089 0.117 1.324 0.000 6.680 1.000 1.324 1.324

990 0.000 0.894 0.097 0.126 1.304 0.000 6.394 1.000 1.304 1.304

1040 0.000 0.930 0.104 0.135 1.288 0.000 6.150 1.000 1.288 1.288
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Sensitivity analysis
Figure 9 presents the sensitivity analysis results for spa-
tial access index for car travel. Since SPAI was calculated 
using a multi-modal method with different combina-
tions of coefficients for car and bus travel, each line rep-
resents the mean SPAI using a specific coefficient (β) for 
car travel. Different SPAI values within each line repre-
sent the mean value using different coefficients for bus 
travel. For example, the line of β = 140 (the top blue line) 
represents all of the mean SPAI scores based on the fol-
lowing combination of coefficients from left to right: 
βcar = 140, βbus = 440; βcar = 140, βbus = 490; βcar = 140, 
βbus = 540; βcar = 140, βbus = 590; βcar = 140, βbus = 640; 
βcar = 140, βbus = 690; βcar = 140, βbus = 740; βcar = 140, 
βbus = 790; βcar = 140, βbus = 840; βcar = 140, βbus = 890; 
βcar = 140, βbus = 940; βcar = 140, βbus = 990; and βcar = 140, 
βbus = 1040.

We noticed that SPAI for car travel decreased as the 
coefficient for car travel increased from 140 to 320. 
SPAI also decreased as the coefficient for bus travel 

(x-axis) increased from 440 to 1040, although it is less 
pronounced.

Figure  10 presents the sensitivity analysis results for 
spatial access index scores for bus travel. Each line rep-
resents the mean SPAI using a specific coefficient for bus 
travel. Different SPAI values within each line represent 
the mean value using different coefficient for car mode. 
For example, the line of β = 1040 (the top blue line) rep-
resents all of the mean SPAI based on the following com-
bination of coefficients from left to right: βbus = 1040, 
βcar = 140; βbus = 1040, βcar = 155; βbus = 1040, βcar = 170; 
βbus = 1040, βcar = 185; βbus = 1040, βcar = 200; βbus = 1040, 
βcar = 215; βbus = 1040, βcar = 230; βbus = 1040, βcar = 245; 
βbus = 1040, βcar = 260; βbus = 1040, βcar = 275; βbus = 1040, 
βcar = 290; βbus = 1040, βcar = 305; and βbus = 1040, 
βcar = 320.

We noticed that SPAI for bus travel increased as the 
coefficient for bus travel increased from 440 to 1040. 
However, SPAI decreased significantly as the coefficient 
for car travel (x-axis) increased from 140 to 320.

Fig. 5 Spatial distribution of Spatial Access Index Scores for bus travel in the study area
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Finally, Fig.  11 presents the sensitivity analysis results 
for the integrated spatial access index scores. Each line 
represents the mean SPAI using a specific coefficient for 
car travel. Different SPAI values within each line repre-
sent the mean value using different coefficients for bus 
travel. For example, the line of β = 320 (the bottommost, 
light blue line) represents all of the mean integrated SPAI 
scores based on the following combination of coeffi-
cients, from left to right: βcar = 320, βbus = 440; βcar = 320, 
βbus = 490; βcar = 320, βbus = 540; βcar = 320, βbus = 590; 
βcar = 320, βbus = 640; βcar = 320, βbus = 690; βcar = 320, 
βbus = 740; βcar = 320, βbus = 790; βcar = 320, βbus = 840; 
βcar = 320, βbus = 890; βcar = 320, βbus = 940; βcar = 320, 
βbus = 990; and βcar = 320, βbus = 1040.

We noticed that the integrated SPAI decreased as the 
coefficient for car travel increased from 140 to 320, which 
is similar to the pattern revealed in the car-only mode 
(Fig.  9). However, the integrated SPAI increased as the 
coefficient for bus travel (x-axis) increased from 440 to 
1040, due to the addition of car-only and bus-only SPAI.

A one-way ANOVA test revealed significant variations 
in SPAI across different coefficients (440 ≤ β ≤ 1040) 
( p < 0.0001 ) for bus-only travel (Hypothesis 9). Also, 
within the same group of coefficients for bus travel 
(440 ≤ β ≤ 1040), significant variations exist in SPAI when 
different coefficients for car were used ( p < 0.0001 ) 
(Hypothesis 10). For car travel, although we found sig-
nificant variations in SPAI across different coefficients 
(140 ≤ β ≤ 320) ( p < 0.05) (Hypothesis 7), SPAI did not 
vary significantly within the same group of car coeffi-
cients (p = 0.1) (Hypothesis 8). For integrated results, 
a one-way ANOVA test revealed significant variations 
in SPAI across different coefficients (140 ≤ β ≤ 320) 
(p < 0.0001) (Hypothesis 11). Within the same group of 
coefficients for car travel, significant variations also exist 
in SPAI when different coefficients for bus were used 
(p < 0.0001) (Hypothesis 12).

For SPAR, the one-way ANOVA test found no signifi-
cant variations across different coefficients for hypoth-
esis 13 through 18 ( p = 1). To summarize, the sensitivity 

Fig. 6 Spatial distribution of Spatial Access Ratio Scores for bus travel in the study area



Page 16 of 22Lin et al. Int J Health Geogr  (2018) 17:33 

analysis indicated that SPAI varies significantly while the 
SPAR remains stable for car travelers, bus riders, and 
integrated score when different coefficients were used.

Discussions and conclusions
The E2SFCA method has been widely implemented for 
measuring spatial accessibility to health resources. How-
ever, the use of the impedance coefficient in an imped-
ance function (e.g., the Gaussian function) introduces 
uncertainty to E2SFCA as access scores may change 
significantly as impedance coefficients change. Under 
the multi-modal framework, this paper proposed an 
enhancement to the E2SFCA methods by incorporat-
ing a spatial access ratio for spatial access measurement. 
To provide a baseline for comparison, we also evalu-
ated spatial access using the single-modal E2SFCA (car 
only) based on impedance coefficients of 140–320 for 
car travelers. Consistent with previous findings [21], we 

also found that spatial access indices with car-only travel 
(mean 1.456–1.542) are lower (p < 0.05) than the spa-
tial access index for car travelers using the multi-modal 
method (mean 1.569–1.667). Since the single-modal 
E2SFCA was not the focus of the present study and pre-
vious studies have discussed the differences between the 
single-modal and multi-modal methods, the full results 
of the single-modal method were not presented here. 
Consistent with previous research, SPAI for bus riders 
was significantly lower compared with car drivers. This 
was due to less population competing with car travel-
ers within each catchment when the entire demanding 
population was subdivided into car drivers and bus rid-
ers using the multi-modal approach. Put another way, 
bus riders have less opportunity to exert demand on a 
supply or resource. Therefore, single-modal methods 
tend to overestimate the overall spatial accessibility for 

Table 4 Descriptive Statistics of Integrated Spatial Access Index and Spatial Access Ratio scores

a Coefficient of variation

β Integrated SPAI  (10−3) Integrated SPAR

Min Max Mean SD CVa Min Max Mean SD CVa

Car

 140 0.000 5.009 1.753 1.243 0.709 0.000 2.773 1.000 0.709 0.709

 155 0.001 4.680 1.730 1.165 0.673 0.000 2.627 1.000 0.673 0.673

 170 0.001 4.411 1.711 1.102 0.644 0.000 2.507 1.000 0.643 0.643

 185 0.001 4.188 1.695 1.049 0.619 0.001 2.406 1.000 0.619 0.619

 200 0.001 4.000 1.681 1.005 0.598 0.001 2.321 1.000 0.598 0.598

 215 0.001 3.841 1.669 0.968 0.580 0.001 2.247 1.000 0.579 0.579

 230 0.001 3.703 1.658 0.935 0.564 0.001 2.183 1.000 0.563 0.563

 245 0.002 3.583 1.648 0.906 0.550 0.001 2.127 1.000 0.549 0.549

 260 0.002 3.478 1.640 0.881 0.537 0.001 2.077 1.000 0.537 0.537

 275 0.002 3.385 1.632 0.858 0.526 0.001 2.032 1.000 0.525 0.525

 290 0.002 3.302 1.625 0.837 0.515 0.001 1.992 1.000 0.515 0.515

 305 0.002 3.228 1.618 0.819 0.506 0.001 1.956 1.000 0.506 0.506

 320 0.002 3.161 1.612 0.802 0.497 0.001 1.924 1.000 0.497 0.497

Bus

 440 0.000 4.670 1.631 0.942 0.578 0.000 2.745 1.000 0.574 0.574

 490 0.000 4.691 1.636 0.947 0.579 0.000 2.747 1.000 0.575 0.575

 540 0.000 4.724 1.641 0.952 0.580 0.000 2.755 1.000 0.576 0.576

 590 0.000 4.758 1.646 0.957 0.581 0.000 2.762 1.000 0.578 0.578

 640 0.000 4.790 1.652 0.963 0.583 0.000 2.766 1.000 0.579 0.579

 690 0.000 4.822 1.659 0.969 0.584 0.000 2.770 1.000 0.580 0.580

 740 0.000 4.852 1.665 0.975 0.586 0.000 2.772 1.000 0.581 0.581

 790 0.000 4.881 1.672 0.982 0.587 0.000 2.773 1.000 0.583 0.583

 840 0.000 4.908 1.679 0.988 0.588 0.000 2.772 1.000 0.584 0.584

 890 0.000 4.935 1.686 0.995 0.590 0.000 2.772 1.000 0.585 0.585

 940 0.000 4.961 1.694 1.001 0.591 0.000 2.770 1.000 0.587 0.587

 990 0.000 4.986 1.701 1.008 0.593 0.000 2.768 1.000 0.588 0.588

 1040 0.000 5.009 1.708 1.015 0.594 0.000 2.766 1.000 0.589 0.589
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population who rely on other transportation modes that 
are slower than car (e.g., bus).

Our previous study has demonstrated the variation in 
SPAI using the single-modal (car only) E2SFCA method 
[42]. Our sensitivity analysis results in the present study 
suggest that the SPAI also varied significantly when dif-
ferent Gaussian impedance coefficients were used. This 
finding has important methodological implications, since 
previous studies suggest the Gaussian curve is the pre-
ferred travel impedance function in the gravity model 
[19]. When the Gaussian function is used, variability 
due to the choice of coefficient (β) is even more crucial 
for multi-modal E2SFCA because of the inclusion of 
multiple transportation modes which might be associ-
ated with different patterns of travel impedance. That is, 
different travel modes may see their access, or ability to 
exert demand, decrease with distance at a different rate. 
We found that SPAI for car travel is not sensitive to the 
coefficient for bus (average change in SPAI as coefficient 

for bus increases: − 0.53% based on results presented in 
Fig. 9). However, SPAI for bus is greatly impacted by coef-
ficient for car with an average change in SPAI of − 48.65% 
as the coefficient for car increases based on results pre-
sented in Fig. 10. This observation could be explained by 
the disproportionately higher percentage of car travelers 
compared with bus riders in the study area.

We found that SPAI decreases as the impedance coef-
ficient (β) increases for car mode, while SPAI increases as 
β increases for bus mode. Overall, the R value (supply-to-
demand ratio) calculated in Eq. 3 decreases as β increases 
since the weight increases and thus the denominator 
increases. However, different patterns were observed in 
SPAI for cars and buses due to the  different extents to 
which the denominator in Eq. 3 increases, which is pri-
marily attributed to unbalanced distribution of popu-
lation under these two transportation modes (with a 
higher percentage of car drivers and low percentage 
of bus riders). For car-specific SPAI, the increase in the 

Fig. 7 Spatial distribution of Integrated Spatial Access Index (SPAI) scores for both car and bus travel in the study area
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Fig. 8 Spatial distribution of Integrated Spatial Access Ratio (SPAR) scores for both car and bus travel in the study area

Fig. 9 Sensitivity analysis results of Spatial Access Index for car travel
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denominator and thus the decrease in R value in Eq. 3 is 
stronger than the increase in the weight when calculat-
ing the SPAI in Eq. 4, which makes the SPAI smaller as 
β increases. However, for bus-specific SPAI, the increase 
in the denominator and thus the decrease in R value in 
Eq.  3 is weaker than the increase in the weight when 

calculating the SPAI in Eq.  4, which makes the SPAI 
larger as β increases. The integrated SPAI has a differ-
ent pattern, in which scores decreased as the coefficient 
for car travel increased and scores increased as the coef-
ficient for bus travel increased. This is primarily due to 

Fig. 10 Sensitivity analysis Results of Spatial Access Index for bus travel

Fig. 11 Sensitivity analysis results of integrated (bus and car) Spatial Access Index
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the fact that the integrated SPAI is the sum of car-specific 
SPAI and bus-specific SPAI.

Although SPAI, which represents the ratio of the num-
ber of PCPs to the demanding population, can be used 
to monitor compliance with national guidelines on 
social equity (e.g., 0.79 PCPs per 1000 population as the 
national benchmark) and identify healthcare shortage 
areas, the extent to which it is subject to the impedance 
coefficient cannot be ignored, especially when the multi-
modal E2SFCA is used. SPAR, on the other hand, demon-
strated significant stability with the different impedance 
coefficients used in the model despite its mathematical 
simplicity. It is a suitable alternative for SPAI for mapping 
purposes and analyses that do not require an absolute 
measure of supply to demand ratio [42].

The multi-modal FCA approach is generally flexible 
in defining different travel-time thresholds for differ-
ent transportation modes [21]. In this study, we used 
different travel time tolerances for car (30 min) and bus 
(60  min), assuming that bus riders are willing to travel 
longer distances to seek healthcare and considering that 
the average travel time to medical services is 52 min by 
public transportation in New Mexico. Future studies 
could extend the time threshold for car travel to 60 min 
and examine the sensitivity of SPAI. The same set of coef-
ficients for bus could therefore be applied to car travel: 
440, 490, 540, 590, 640, 690, 740, 790, 840, 890, 940, 990, 
1040. We expect to see a greater sensitivity in SPAI for 
both bus and car modes due to a higher variability in the 
Gaussian weight associated with the new coefficients.

We observed that the SPAI scores for bus riders were 
very low compared with the car SPAI, which was primar-
ily due to the inconvenient public transit service that was 
limited to the core area of the Albuquerque metropolitan 
area. The SPAI for bus could not match that for car even 
if the travel time threshold was set to 90 min for bus. It 
might be worthwhile to apply our method in an area with 
more convenient public transportation. We examined 
the data in the present study and found 55% of the cen-
sus block groups are beyond 30 min travel by bus to the 
closest primary care physician. For the remaining 45% of 
census block groups within 30 min bus travel to the clos-
est PCP, each block group could access an average of only 
6.5 PCP locations (out of 293 in the study area) within the 
30-min threshold. Another possible explanation is that 
we used population-weighed census block group cent-
ers as the origin, which might lead to a longer travel time 
by bus than an actual residence location. Future studies 
might consider using a fine-scale grid network if popula-
tion data are available.

Compared with other multi-modal methods based on 
the FCA framework, the proposed method has the fol-
lowing strengths. First, we applied a Gaussian impedance 

function in the multi-modal E2SFCA method. Previous 
multi-modal E2SFCA methods only used linear distance 
decay. However, the Gaussian function is preferred in 
gravity models because it compares most favorably with 
realized access data [10, 14, 19, 46]. Second, we evaluated 
the impact of different Gaussian coefficients on SPAI. 
An exhaustive simulation was conducted based on dif-
ferent combinations of coefficients. This is the first study 
to evaluate the sensitivity of Gaussian impedance coeffi-
cients in a multi-modal framework. Third, we introduced 
SPAR as an alternative measurement for multi-modal 
spatial accessibility when the Gaussian function is used. 
SPAR has been proven more reliable in single-modal 
E2SFCA methods, and this is the first study to prove that 
SPAR is also effective in a multi-modal framework.

This study is subject to several limitations. The first lim-
itation is related to data accuracy issues in the PCP data. 
Our PCP data were primarily based on the NPI licensure 
data, which would result in incorrect practicing addresses 
when professionals used a residential address to obtain 
licensure rather than a practice address. Although we 
used Infogroup data and validated and updated PCPs 
practicing addresses in the current study, future stud-
ies should combine different sources of PCP data (e.g., 
license renewal survey data) for more accurate PCP data. 
Second, we used administrative units and created choro-
pleth maps rather than continuous surfaces for the SPAI 
and SPAR. These units are indeed prone to the modifiable 
areal unit problem (MAUP), but they also offer opportu-
nities for using census data (e.g., population with/without 
vehicle) which is necessary for the present study. Since 
this manuscript focuses on the methodology of compar-
ing SPAR against SPAI for multi-model E2SFCA, we feel 
that using administrative boundaries for visualization 
is more straightforward for readers to understand the 
methodology. However, producing continuous accessibil-
ity surface might be ideal for cartographic representation. 
We suggest that future studies use continuous surfaces 
when adopting the present method. Third, we used GTFS 
data to generate travel time by bus, which is subject to 
the date/time schedule and traffic. We averaged a 2-week 
travel time data in the present study, so temporal change 
was not considered. Future studies could evaluate the 
temporal pattern of SPAI and SPAR (e.g., the effect of 
rush hour) based on GTFS data. Fourth, while the multi-
modal FCA approach is generally flexible to define dif-
ferent travel-time thresholds for different transportation 
modes, we did not examine the impact of using other 
travel-time thresholds (e.g., 60 min for car) or using dif-
ferent subzones. For example, instead of using 0–10, 
10–20, 20–30, and 30–60 min sub-zones, future studies 
could examine 0–15, 15–30, 30–45, and 45–60 min sub-
zones for bus. Lastly, we only used the distance/travel 
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time impedance for the impedance function in the model. 
However, in reality, patients’ willingness to access PCPs is 
impacted by many factors, such as the perceived quality 
of PCPs, insurance restrictions, languages, waiting time, 
and others. Future studies should model the impedance 
function based on more realistic conditions and realized 
data, where it is available.
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