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Abstract 

Background: Health data usually has missing or incomplete location information, which impacts the quality of 
research. Geoimputation methods are used by health professionals to increase the spatial resolution of address infor-
mation for more accurate analyses. The objective of this study was to evaluate geo-imputation methods with respect 
to the demographic and spatial characteristics of the data.

Methods: We evaluated four geoimputation methods for increasing spatial resolution of records with known 
locational information at a coarse level. In order to test and rigorously evaluate two stochastic and two deterministic 
strategies, we used the Texas Sex Offender registry database with over 50,000 records with known demographic and 
coordinate information. We reduced the spatial resolution of each record to a census block group and attempted 
to recover coordinate information using the four strategies. We rigorously evaluated the results in terms of the error 
distance between the original coordinates and recovered coordinates by studying the results by demographic sub 
groups and the characteristics of the underlying geography.

Results: We observed that in estimating the actual location of a case, the weighted mean method is the most 
superior for each demographic group followed by the maximum imputation centroid, the random point in match-
ing sub-geographies and the random point in all sub-geographies methods. Higher accuracies were observed for 
minority populations because minorities tend to cluster in certain neighborhoods, which makes it easier to impute 
their location. Results are greatly affected by the population density of the underlying geographies. We observed high 
accuracies in high population density areas, which often exist within smaller census blocks, which makes the search 
space smaller. Similarly, mapping geoimputation accuracies in a spatially explicit manner reveals that metropolitan 
areas yield higher accuracy results.

Conclusions: Based on gains in standard error, reduction in mean error and validation results, we conclude that 
characteristics of the estimated records such as the demographic profile and population density information provide 
a measure of certainty of geographic imputation.
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Background
Spatial epidemiology is the study of geographic variation 
of diseases. Locational accuracy is essential in geographi-
cal studies including epidemiological studies where the 
locational characteristics and behaviors of the patient are 
key to understand the underlying risk factors to inform 
policymaking. For example, underlying spatial factors 

such as environmental exposures have been linked to 
cancer including, asbestos exposure and mesothelioma, 
polychlorinated biphenyls (PCBs) and melanoma, afla-
toxin and liver cancer, benzene and acute myeloid leuke-
mia, tobacco and multiple cancers, and air pollution and 
lung cancer [1–8]. Besides cancer, environmental expo-
sures are also associated with other diseases, for example, 
air pollution has been linked with respiratory disease, 
cardiovascular disease, and reproductive health [9–12]. 
Spatial epidemiology and geographic information sys-
tems (GIS) have also been applied to non-environmental 
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health issues, including understanding the built environ-
ment [13], health planning [14], and crime data [15].

While high quality scholarly research requires reli-
able locational information of exposures and outcomes, 
the level of spatial detail available to health researchers 
is often not sufficiently fine resolution. This is for two 
main reasons: (a) while health information is exceed-
ingly valuable, it is protected by federal law and thus it is 
imperative to protect the privacy of individuals; and (b) 
information is often only collected or made available at 
a lower resolution, such as the zip code or county level. 
For health data, the exact geographic coordinates of par-
ticipants are often not available without a data request 
and several levels of approval to ensure the confidenti-
ality of participants is maintained. Failure to accurately 
and precisely capture geographic information may lead 
to incorrect findings and conclusions, including an over-
estimation of the true association [16] or imprecise esti-
mates [17, 18]. Researchers often work with data with 
coarse resolution (e.g. when the complete street address 
is missing and only the ZIP code is available), resulting 
in omitted records and potentially creating biases due 
to misclassification [19]. Geocoding to ZIP code area 
centroids, a common practice in health research, often 
falsely indicates clustering at the centroid [20, 21], espe-
cially so in rural communities [22].

In order to rectify issues associated with imprecise 
spatial data, several spatially informed geo-imputation 
methods have been developed to increase the spatial res-
olution. They are similar to disaggregation methods [15], 
which interpolate data at smaller units using the spatial 
distribution of ancillary data.

Geo-imputation strategies can generally be divided 
into stochastic and deterministic methods. One method 
for stochastic geo-imputation is the use of the cumula-
tive distribution function to randomly assign a case to a 
locale [23–25]. A variety of this method uses a variable 
such as population to construct the probability of a locale 
being chosen [24]. Deterministic methods assign cases to 
locales deterministically, based on a set of rules, such as 
the geographically weighted mean of locales, or the cen-
troid of the locale [26] that is the best fit. A mixture of 
the two can be used as well by selecting a random point 
within a deterministically chosen locale. Although the 
literature on the use of imputation for missing address 
information is sparse, authors have used both stochas-
tic and deterministic methods, including alone and in 
combination [23, 27–32]. For example, Curriero et  al. 
[23] found that misclassification in assignment of correct 
census tract was reduced most using deterministic geo-
imputation weighted by specific ethnicity/age population 
in comparison to a stochastic method and other types 
of deterministic methods. Walter and Rose [30] devised 

a stochastic method called random property alloca-
tion, which randomly assigns each case with incomplete 
address information to an address that was previously 
geocoded within the corresponding geographical unit, 
where each address has equal probability. They com-
pared this method to one stochastic and three determin-
istic geo-imputation methods, which assign incomplete 
addresses to geographic centroids, population weighed 
centroids, areal proportion using random function and 
areal proportion using deterministic function, similar to 
the methods mentioned before. The authors observed 
that while all geo-imputation methods performed well, 
the random allocation method was the least prone to 
bias, as centroid based methods can create artificial clus-
tering and bias.

The accuracy of geographic imputation methods is 
typically assessed by comparing the results from sev-
eral methods. The results can be assessed based on: (a) 
the ratio of correct estimates, e.g. the number of times a 
case was assigned to the correct geographical unit; or (b) 
based on the distance between the predicted and known 
coordinates. Theoretically, when ground truth data is not 
available, it is not possible to evaluate the accuracy of the 
results. In this study, we are not focused on missing spa-
tial data but rather our focus is on the application of geo-
imputation methods to improve the spatial accuracy of 
spatial data by estimating higher resolution locations of 
events or persons based on known lower resolution spa-
tial information (such as ZIP code) and supporting infor-
mation (such as demographic characteristics). In this 
study, we apply four geo-imputation methods, includ-
ing both stochastic and deterministic, to impute coordi-
nate level information followed by an evaluation of the 
performance of the geo-imputation methods using the 
demographic sub groups and the characteristics of the 
underlying geography.

Methods
Data
As discussed in the introduction, the development 
and discussion of geo-imputation methods is most 
relevant for the analysis of spatial interactions in dis-
ease patterns. However, since most of the actual hos-
pital records are justifiably protected by privacy laws, 
we instead have selected a subset of the Texas Sex 
Offender Registry as the population to include in our 
case study. This dataset provides address, age, gender 
and race information on all convicted sex offenders in 
Texas [33]. Of the 88,552 records that were acquired at 
the access date (August 28, 2017), 52,260 had known 
Texas address information that were previously geo-
coded to X,Y coordinates. Of these records, 52,229 
had a known race, and only this subset of the data with 
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known address and race information was used in the 
subsequent analyses. A breakdown of the data by race, 
age and gender is provided in Table 1, which shows the 
existing race groups in the registry and summarizes 
records into five age groups. These records were spa-
tially joined to the Texas Census Block layer to add the 
census block information. Here are the characteristics 
of this data that are relevant to this project [33]: 

  • The sex offender registration laws in Texas went 
into effect on September 1, 1991. Among other 
information, The Texas Sex Offender Registration 
Program requires offenders to submit full name, 
date of birth, sex, race, height, weight, eye color, 
hair color, social security number, driver’s license 
number, shoe size, home address or a detailed 
description of each geographical location at which 
the person resides or intends to reside.

  • Adult sex offenders must register either for life or 
for 10 years depending on certain conditions.

  • Registered offenders must report address changes.
  • Sex offenders may be prohibited from living in child 

safety zones defined by laws and city ordinances, as 
well as campuses of higher education.

This information means the data is not collected at 
specified, regular intervals, but whenever there is a new 
entry and as soon as possible after an address change. 
Demographic data for the population includes age, gen-
der and ethnicity information from 2010 Census Sum-
mary File 1 (SF1) [34] at census block level, which is 
the target resolution to assign our data. The SF1 data 
includes nine ethnic groups and 23 population ranges 
for both males and females, resulting in 414 possible 
demographic combinations. Additional file 1: Tables S1 
and S2 list the complete list of race and age groups in 
the Census data.

This demographic data was merged and joined to the 
census block shapefile with NAD 1983 Texas Centric 
Mapping System Albers projection. There are 914,231 
census blocks in the State of Texas.

Study design
For all records with existing X, Y coordinates, we carry out 
the following steps:

(a) Obtain census block information using GIS.
(b) Obtain census block group (to reduce data quality 

for the purposes of validating imputation).
(c) Impute X, Y coordinates based on census blocks 

with census information for each method.
(d) Calculate error distance for each strategy.

Thus, we first reduce the data quality of each X, Y record 
by selecting its block group in order to make the data com-
parable to the more coarse spatial data quality (steps a and 
b). In the next step (c), we attempt to improve the spatial 
data quality by correctly assigning each X, Y record to 
the correct census block. In the last step (d) we evaluate 
our results by calculating the distance between the point 
assigned to the census block, and the original X, Y record.

Geo‑imputation strategies
The chosen geo-imputation methods were derived from 
the literature, in order to assign a non-geocoded record 
with census block group information to (a) a random point 
within the entire census block group; (b) a random point 
within the extents of matching blocks; (c) the centroid of 
census block with the highest weight; and (d) the weighted 
centroid of the matching census blocks. We chose the fol-
lowing methods which are either stochastic or determinis-
tic methods identified from the literature [23, 28–30].

Imputation Strategy #1 and #2
The following two imputation methods generate geoim-
puted results based on a complete random spatial function. 
These methods provide a basis to test the relative useful-
ness of the deterministic methods (3 and 4) that rely on the 
underlying demographic characteristics.

Strategy #1, random in Block Group, assigns the record 
to a random point within the entire block group as used 
in Henry and Boscoe [28]. Strategy #2, random in Match-
ing blocks, randomly assigns a random point only within 
blocks that have matching demographic population to the 
individual record.

Imputation Strategy #3
This method assigns the record to the centroid of the geo-
graphical unit with the highest calculated weight. The 
weight is determined as in Eq. 1 [23]. For example, in the 
case of a 71-year-old white female person, the weight of a 
particular block would be calculated as the following:

(1)Block Weight =
No. of White Female 70− 74 in Block

Total of White Female 70− 74 in Block Group
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This method can be prone to generating artificial clus-
ters [29], as all imputed coordinates from a particular 
geographical unit (which is chosen as it has the highest 
weight) will be identical.

Imputation Strategy #4
This strategy assigns the record to the weighted centroid 
of the matching census blocks using the mean center of 
the available population similar to the approach used by 
Walter and Rose [30]. However, we matched demograph-
ics to target smaller population (as in Eq. 1) rather than 
the general population only. This strategy requires first 
calculating the centroid of each census block, and then 
calculating one final centroid based on their imputation 
weights calculated according to Eq.  1. In this approach, 
the weight of each block is calculated using one of the 414 
combinations based on the case’s gender, age, and race 
within the block group to which it belongs. This method 
can be compared to the previous imputation strategy, as 
both methods make use of the block weights. The dif-
ference is that this method results in an estimation built 
by the entire set of candidate geographies based on how 
likely they are to contain a specific case. Also, unlike the 
previous imputation strategy, this strategy is not prone 
to artificial clustering since it is nearly impossible to gen-
erate the same weighted mean center. Two imputations 
would overlap only if they are in the same census block 
group with identical demographic characteristics.

Evaluation of the accuracy of the imputation strategies
We evaluate the imputation strategies described above 
by comparing the original coordinates with geo-imputed 
coordinates using all records. We calculated the distance 
between the imputed location and the actual location 
(accuracy), stratified by age groups and ethnicities since 
certain demographic groups may cluster spatially, while 
others distribute more uniformly. Thus, high accuracy 
location data can be deduced when the target demo-
graphics are very particular and only exist in one or a 
few candidate geographies. We also evaluated the results 
by population density, as we expected the results to be 
more accurate when the underlying geographical unit is 
smaller.

We developed box and whisker plots to display the 
accuracy of each geo-imputation method and underlying 
factors, validated the stochastic methods using multiple 
imputation, assess the sensitivity of results based on the 
administrative boundary type, and map the geographic 
inaccuracy. We expected to observe differences in geo-
graphical patterns of imputation accuracy across space 
(e.g. particular neighborhoods, rural areas, etc.).

Results
We geoimputed 96.7% of records (n = 50,494) by all four 
strategies; the other 1734 records could not be geoim-
puted by Strategies #3 and #4 as they did not have any 
matching population in the searched census block group. 
This is potentially due to the difference in dates of data 
collection (Texas Sexual Offender Registry date of offense 
vs. US Census data restricted to 2010, the date census 
data was collected) combined with addresses change, or 
inaccuracies in data collection. In addition, many factors 
could account for this small number of records that could 
not be imputed including known racial misclassification 
issues [35, 36].

Accuracy by imputation strategy and demographic group
Figure  1 displays the range of error distances (mini-
mum, maximum, median, first quartile and third quar-
tile) between each geoimputed location and the actual 
location in meters for the four imputation methods. 
We observed that the weighted mean method (Strategy 
#4) had the lowest error distance, followed by maxi-
mum imputation centroid (Strategy #3), random point 
in matching sub-geographies (Strategy #2) and random 
point in all sub-geographies (Strategy #1) methods. This 
indicates there is less uncertainty around the estimate of 
the mean measurement of the weighted mean method 
(Strategy #4), compared to random methods. In addition, 
the weighted mean method has a median error of 522 m, 
providing an almost 40% more accurate estimate than 
the complete random estimate method which revealed 

Fig. 1 Box and Whisker plot of results by method (in meters)
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a median error of 845  m. Although the weighted mean 
method consistently reveals superior results, we observed 
differences among the demographic groups (Additional 
file 1: Table S3).

Accuracies were higher for minority populations 
because minorities tend to cluster in certain neighbor-
hoods which makes it easier to impute their location 
(Fig. 2). However, the geoimputation accuracy appears to 

decline for older populations. This might be particularly 
due to elderly people living in rural areas (Fig. 3).

Figure 3 provides the mean error distance between the 
imputed points and the actual points broken down by age 
group and geo-imputation method (see Additional file 1: 
Table  S3 for information on gender). These results also 
indicate that in estimating the actual location of a case, 
the weighted mean method (Strategy #4) is almost always 

Fig. 2 Mean error distance by race and method

Fig. 3 Mean error distance by age group and method
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the most superior for each demographic group followed 
by the maximum imputation centroid (Strategy #3), the 
random point in matching sub-geographies (Strategy 
#2) and the random point in all sub-geographies meth-
ods (Strategy #1). The only exception is the 65–85-year-
old Asian subgroup, which has only 5 cases, as well as 
the American Indian/Alaska Native (AI/AN) group as a 
whole.

Accuracy by imputation strategy and population density
The population density varies greatly in the study area, 
from 0.08 people to 30,142 people per  km2; thus, we 
applied a logarithmic scale to the x-axis to allow for the 
large differences in population densities. Figure 4 shows 
mean error distances as well as standard errors based on 
population densities. As is expected, all methods reveal 
a steep drop-off for increasing population densities with 
error distances and standard errors much larger in areas 
with very low population densities and lower error dis-
tances and standard errors for areas with higher popula-
tion densities (for detailed information: Additional file 1: 
Table  S4). For this reason, error bars are not visible at 
high density ranges. The weighted mean method reveals 
the lowest error distances for all population densities, 
which are indicative of the size of the geographical units. 
Figure 5 provides an enhanced view for areas with rela-
tively high population densities (> 100 people/km2) only 

and indicates that the weighted mean method performs 
the best.

Certainly, it makes sense to expect high accuracies in 
areas with high population density, these areas are typi-
cally identified by smaller census blocks and decreasing 
the search space. Error results range from 48,300  m by 
a random estimate to only 58  m by the weighted mean 
estimate in our population density analysis. We observed 
that at the low end of the population density (0.01–
0.1 people/km2), the performance of methods #1, #2, and 
#3 were not significantly different while method #4 per-
forms significantly better than the first three methods. 
At the high end of the population density (10,000–35,000 
people/km2) the methods fall into two groups with meth-
ods #3 and #4 performing better than methods #1 and #2 
(Fig. 5).

Multiple imputation
We conducted multiple imputation using a sample size of 
4864 records to further validate the results. We imputed 
each record 10 times and computed the error distance for 
each imputation for the methods #1 and #2, which are 
stochastic. We did not conduct multiple imputation for 
methods #3 and #4 since they are deterministic methods 
resulting in the same point estimate no matter how many 
times the method is run. We observed that the average 

Fig. 4 Mean error distance by population density and method
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error values from multiple imputation experience are 
comparable to the original results (Fig. 6). 

Sensitivity analysis
To evaluate the sensitivity with respect to different spa-
tial units, we used the smaller sample set and reduced the 
spatial resolution first to census tracts and then to coun-
ties. We then conducted the identical analyses with all 
four strategies using these spatial units.

Figures  7 and 8 reveal that the difference between 
impacts of the census tract and county level information, 
respectively, depends on the underlying population den-
sity. There are only two imputations at the lowest density 
bin, which is the reason for the unexpected result for 
the first method. Overall, rural census tracts and coun-
ties have poorer performance compared to urban census 
tracts and counties.

Accuracy across geography
We plotted each of the 50,494 results on the map and per-
formed an inverse distance weighted interpolation using 
weighted mean results (Fig. 9). Results, ranging from 52.8 
to 47,992 m, reveal how the accuracy changes across the 
study area. As expected, Dallas, Houston, Austin and San 
Antonio metropolitan areas yield higher accuracy results. 
We aggregated the results to census tract level presenting 

the highest error distance and removed census tracts 
with < 0.001 imputed records per  km2 to avoid reporting 
unreliable interpolation results.

Discussions
We developed a methodological approach to evaluate 
various geoimputation methods with a large data set with 
complete, known, addresses and demographic informa-
tion. Through rigorously evaluating the results stratified 
by demographic sub groups, population density, and 
geography, we have contributed additional knowledge to 
the field [23–25, 30].

This approach can be applied in contexts with missing 
addresses to increase the spatial resolution of the existing 
information. In such application, limitations and poten-
tial uncertainties of the geoimputation can be deduced 
from the size and population density of the underlying 
geography, as well as particular characteristics of the 
demographical profile of the particular record. We found 
that strategy #4, the Weighted Mean method, performed 
the best overall as in Curriero et  al. [23], and in almost 
all sub evaluation criteria. This also supports Henry and 
Boscoe’s [24] stochastic method weighted by race and 
ethnicity population as opposed to a random point or a 
geographic centroid. As in Henry and Boscoe’s [24] study, 
we presented results by ethnicity, age and population 

Fig. 5 Mean error distance by population density and method in higher density areas
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density (also as in Walter and Rose [30] who evalu-
ated them based on Metropolitan vs. Non-Metropolitan 
areas), but with further detail. Similar to Hibbert et  al. 
[25], which report results by geography (i.e. four states), 
we report the results across the space. As in JD Hib-
bert et al. [36] and FC Curriero et al. [34], we also con-
ducted multiple imputation of a sample set to validate 
our results. In addition, we conducted sensitivity analyses 
using two coarser spatial units of census tracts and coun-
ties. All the reviewed studies evaluated results based on 
assignment to correct unit, while we reported the results 
based on distance between predicted point and the actual 
point. We argue that correct assignment probability 
depends on the number of high resolution units in the 
search space, and therefore reporting the error distance 
can be viewed as an alternative way to evaluate different 
methods.

The range of error based on the demographic char-
acteristics and population density is instructive for 
researchers working with limited locational informa-
tion. For example, for some exposures of interest, sub 
kilometer gains in accuracy in urban core areas may 
not be very significant on epidemiological associations. 

On the other hand, the accuracy gains based on certain 
demographic groups or population densities (such as 
rural areas) may provide required level of accuracy to 
establish such associations.

There are a few potential issues in the evaluation of 
the results:

(a) We use demographic data from the Census Bureau 
from 2010. If the demographics of the case’s location 
changed from the time of the decennial census, our 
error estimates would be impacted. Similarly, the 
individuals on the sex offender registry could have 
moved, and would report a different address to the 
registry than the address reported at the census. 
This might explain some of the 1734 records that 
could not be geoimputed by Strategies #3 and #4.

(b) Potential data collection inaccuracies could also 
result in misclassification of race/ethnicity. For 
example, there are 13,336 records reporting a white 
race with unknown ethnicity, which we corre-
sponded as white race in the Census data. We also 
corresponded the 26,135 records with white race 
with Hispanic ethnicity to the Hispanic or Latino 
race category in the Census data (Additional file 1: 

Fig. 6 Mean error distance by population density using multiple imputation by random methods



Page 10 of 13Dilekli et al. Int J Health Geogr  (2018) 17:30 

Fig. 7 Mean error distance by population density using census tract level information

Fig. 8 Mean error distance by population density using county level information
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Table  S1). While we assumed that other attributes 
are collected correctly, while there is no feasible way 
to validate them.

(c) While the sexual offender dataset is very large, it 
may still not be representative of the general popula-
tion in terms of demographics as well as living pref-
erences/limitations. For example, only 2.5% of the 
records belong to females. This is not comparable to 
many other health outcomes where these methods 
may be applied, including cancer rates among men 
and women, which ranges between 7:4 and 3:2 [37]. 
Additionally, we assume that the individuals in this 
database are randomly dispersed throughout the 
community, which is unlikely because of their status 
as a sexual offender.

Many publicly-available datasets, including state-level 
cancer incidence and mortality data and the Surveillance 

Epidemiology and End Results program data are gener-
ally available at the county level, prohibiting detailed 
analysis with complete address information due to pri-
vacy and confidentiality concerns. Although additional 
validation in other datasets that include both genders are 
needed, these methods are generalizable to other pub-
licly-available datasets. Future studies may apply these 
methods to other types of health data with missing com-
plete address information and to data sources that lack 
certain demographic information, at the expense of gen-
erating additional uncertainty.

Future studies should consider conducting geoimputa-
tion at other geographic levels, including ZIP code level 
information or applying a method based on cumulative 
random function, which would assign cases to finer spa-
tial units randomly based on weights. Theoretically the 
deterministic imputation methods used in this study can 
be further improved by utilizing additional data, such as 
income, education etc., if available. These methods can 

Fig. 9 Interpolation of accuracy results of the weighted mean method
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be further enhanced by additional GIS or Remote Sens-
ing data to exclude areas that do not contain residences. 
For example, we could eliminate areas without any resi-
dential buildings with a combination of GIS (zoning) and 
RS (impervious surface) data and methods.

Conclusions
Based on gains in standard error, reduction in mean 
error and validation results, we conclude that meth-
ods #3 and #4, Maximum Imputation and Weighted 
Mean methods were preferable in this study when no 
fine level spatial information is available, though this 
should be replicated in a population that is more ran-
domly dispersed. We conclude that characteristics of 
the estimated records such as the demographic profile 
and population density information impact accuracy of 
results. In the absence of ground truthing information, 
such variables can provide accuracy information using 
the error ranges provided in this study.
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