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Stress experiences in neighborhood 
and social environments (SENSE): a pilot study 
to integrate the quantified self with citizen 
science to improve the built environment 
and health
Benjamin W. Chrisinger1* and Abby C. King1,2

Abstract 

Background: Identifying elements of one’s environment—observable and unobservable—that contribute to chronic 
stress including the perception of comfort and discomfort associated with different settings, presents many methodo-
logical and analytical challenges. However, it also presents an opportunity to engage the public in collecting and analyz-
ing their own geospatial and biometric data to increase community member understanding of their local environments 
and activate potential environmental improvements. In this first-generation project, we developed a methodology to 
integrate geospatial technology with biometric sensing within a previously developed, evidence-based “citizen science” 
protocol, called “Our Voice.” Participants used a smartphone/tablet-based application, called the Discovery Tool (DT), to 
collect photos and audio narratives about elements of the built environment that contributed to or detracted from their 
well-being. A wrist-worn sensor (Empatica E4) was used to collect time-stamped data, including 3-axis accelerometry, 
skin temperature, blood volume pressure, heart rate, heartbeat inter-beat interval, and electrodermal activity (EDA). 
Open-source R packages were employed to automatically organize, clean, geocode, and visualize the biometric data.

Results: In total, 14 adults (8 women, 6 men) were successfully recruited to participate in the investigation. Partici-
pants recorded 174 images and 124 audio files with the DT. Among captured images with a participant-determined 
positive or negative rating (n = 131), over half were positive (58.8%, n = 77). Within-participant positive/negative 
rating ratios were similar, with most participants rating 53.0% of their images as positive (SD 21.4%). Significant spatial 
clusters of positive and negative photos were identified using the Getis-Ord Gi* local statistic, and significant associa-
tions between participant EDA and distance to DT photos, and street and land use characteristics were also observed 
with linear mixed models. Interactive data maps allowed participants to (1) reflect on data collected during the neigh-
borhood walk, (2) see how EDA levels changed over the course of the walk in relation to objective neighborhood 
features (using basemap and DT app photos), and (3) compare their data to other participants along the same route.

Conclusions: Participants identified a variety of social and environmental features that contributed to or detracted 
from their well-being. This initial investigation sets the stage for further research combining qualitative and quantita-
tive data capture and interpretation to identify objective and perceived elements of the built environment influence 
our embodied experience in different settings. It provides a systematic process for simultaneously collecting multiple 
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Background
Living and working in chronically stressful environments 
are thought to contribute to a wide range of adverse 
health outcomes. While the body’s stress response sys-
tems (e.g., “fight-or-flight”) may be helpful in adapting to 
acute environmental stimuli, major life events, or trauma, 
the continual triggering of these mechanisms may dimin-
ish an individual’s biological capacity to respond to 
stressors [1]. With the impairment of this biological sys-
tem, chronic stress can increase an individual’s risk of 
experiencing adverse health outcomes, including chronic 
diseases such as obesity and type II diabetes [1–3]. 
Emerging research is also beginning to help us conceptu-
alize and document the causal pathways, including stress, 
related to built environments that may explain the well-
documented burden of chronic disease in disadvantaged 
communities [4–6].

Many studies exploring connections between stress 
and health have used levels of blood or salivary cortisol, 
a steroid hormone produced as part of the body’s stress 
response. Most cortisol research attempts to describe 
cumulative stress effects, though additional attention to 
the different types of stressors—events, structural cir-
cumstances, or daily routines—is needed to understand 
possible pathways to poor health [7]. For example, prior 
studies often have found limited or conflicting evidence 
about the nature of the relationship between cortisol and 
socioeconomic status [7]. McEwen and colleagues pro-
posed a broad framework for measuring chronic stress 
that included a set of ten biometric markers, includ-
ing cortisol, a steroid hormone produced as part of the 
body’s stress response. Called “allostatic load” (AL), the 
measure was intended as a proxy measure for overall 
“wear and tear” on the body’s stress response systems 
[1]. Other researchers have found relationships between 
AL and adverse mental and behavioral health outcomes, 
including cognition [2, 8].

The concept of allostatic load has been applied to 
chronic environmental stressors, especially those related 
to workplace or neighborhood environments [8, 9]. 
Theall et  al. [8] found that a significant amount of AL 
variance among adolescents in the National Health 
and Nutrition Examination Survey was attributable to 
neighborhood-level factors, such as poverty, crime, and 
density of alcohol retailers, even after controlling for 
household-level characteristics. While biomarkers such 

as cortisol or allostatic load allow for a consideration of 
the cumulative effects of stress, they are not as well suited 
to understanding the relative influence of different stress-
ors, or how individual and environmental characteristics 
intersect to yield different stress outcomes.

In response to this challenge, Roe and colleagues 
have spearheaded a new generation of interdiscipli-
nary research that measures direct biological responses 
to different types of built environments. Using a head-
worn device, the Emotiv EPOC, Roe et al. [10] explored 
changes in brain activity (measured via electroencepha-
logram, or EEG) as laboratory participants were exposed 
to images of urban and natural landscape scenes. These 
findings informed later EEG studies with free-moving 
participants walking in different types of environments. 
For instance, Aspinall et  al. [11] found EEG changes as 
participants moved into and out of urban green spaces 
and other environments.

Complicating the identification of environmental con-
tributors to chronic stress is the role of individual percep-
tion [12]. For instance, environmental health researchers 
have found that individuals living in objectively noisy 
neighborhoods do not, in general, exhibit the same ele-
vated stress responses to noise as those that do not. That 
is, individuals may become habituated to or learn to alter 
their perceptions of such chronically stressful environ-
ments [13], although resident selection factors may also 
be at work, at least to some extent (e.g., individuals who 
are particularly sensitive to high noise levels may move 
out of or avoid such neighborhoods) [14–19]. Based 
on such research, studies aimed at investigating physi-
ological responses to stress in differing environments 
are challenged to integrate perception-based measures 
within their built environment assessments. For example, 
Aspinall et al. [11] also asked participants to rate scenes 
across several subjective criteria (e.g., pleasure/displeas-
ure, calm/excitement), adding a dimension of personal 
preference and underlying attitudes toward certain types 
of built environments.

One relatively untested arena that may help us under-
stand both individual characteristics and perceptions 
that matter for chronic stress is the quantified self. This 
sensor-oriented movement encompasses a range of self-
monitoring technologies, especially those that can be 
integrated into smartphones as mobile applications [20]. 
Users typically collect and review biometric (e.g., weight, 

kinds of data, and lays a foundation for future statistical and spatial analyses in addition to more in-depth interpreta-
tion of how these responses vary within and between individuals.
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heart rate) and/or behavioral (e.g., diet, sleep, exercise) 
data out of curiosity or an interest in self-improvement 
[20–22]. While quantified self applications may focus on 
individual or group-level changes in behavior through 
biofeedback or goal-setting, there is great potential to 
develop relevant insights on population-level outcomes 
given sufficiently large datasets [23, 24]. For instance, a 
recent smartphone-derived “big data” study found city-
level correlations between objective walkability metrics 
and device-based walking outcomes measured from over 
700,000 smartphone users across 111 countries [24].

Aside from proprietary wearable datasets, some uni-
versity-sponsored projects aim to crowd-source place-
based biometric data. One example is the Personal 
Activity Location Monitoring System (PALMS), which 
provides validated tools and methodologies for collecting 
geo-located biometric data to track behavior across space 
and time, especially individual and group-level dynam-
ics of physical activity [25–27]. Another suite of projects 
employ “People as Sensors” methodologies that crowd-
source a variety of objective and perceived data, includ-
ing biometrics, in order to deliver relevant feedback to 
urban designers and planners [28–30]. For example, Zeile 
and colleagues used a biosensor-oriented approach to 
track how and why stress responses changed over space 
and time among a cohort of bicyclists in Cambridge, 
Massachusetts. Importantly, they found participants’ 
mapped stress data corresponded to individual experi-
ences, as measured with video recordings [30].

Our pilot study builds upon earlier biometric built 
environment assessments by integrating dimensions of 
the quantified self movement. First, we utilized a biom-
etric measure of stress involving electrodermal activity 
(EDA), which has been shown to be an effective means of 
differentiating between different kinds of stress environ-
ments and situations (e.g., driving in traffic vs. highway 
driving), and can be collected with relatively low impact 
on participant experience compared to head- or chest-
worn devices [31]. Second, we embedded our biomet-
ric data collection within an existing successful “citizen 
science”-based community activation model, called “Our 
Voice”, which includes a mobile application, referred to 
as the “Discovery Tool,” that allows community members 
to collect objective and perceived neighborhood data 
[32, 33], providing a systematic and technology-assisted 
enhancement to existing community-based qualitative 
research methods, such as Photovoice [34, 35]. By creat-
ing a simple and reliable method of collecting geolocated 
stress data while participants use the Discovery Tool in 
the field, we aim to amplify the known strengths of this 
type of citizen science model. Finally, we introduce open-
source methods for visualizing and sharing perceived 
and objective participant data with participants for their 

inspection and interpretation, with some possible appli-
cations for future testing with additional spatial data.

The primary goals of this pilot study were to: (1) test 
the feasibility of including biometric data collection via 
wrist-worn sensors as part of the objective and perceived 
built environment data collection capabilities of the Dis-
covery Tool mobile app being employed to obtain resi-
dent-collected information on local built environments; 
(2) test the acceptability of different biometric data visu-
alization styles; and (3) explore possible options for test-
ing relationships between documented elements of the 
built environment and biometric changes/outcomes.

Methods
Participant recruitment
To be eligible for the study, prospective participants had 
to be healthy adult volunteers living in or around San 
Francisco, California, and able to complete a relatively 
easy 20- to 25-min walk. Participants were recruited as 
a convenience sample in San Francisco through the net-
works of our San Francisco Bay Area community part-
ner, an urban planning and design nonprofit called Place 
Lab, and through members of the research team. Walk 
appointments were scheduled for one of two days in July 
and September 2017.

Biometric sensor
A wrist-worn biometric sensor, the Empatica E4, was 
selected for this study because it provides a commercially 
available, easy-to-use means of continuously collecting 
time-stamped biometric data, including stress response 
and other possible measures that could be used in sub-
sequent feature identification algorithms. Data collected 
by the E4 include 3-axis accelerometry (which measures 
gravitational force on three spatial dimensions, allow-
ing for a three-dimensional understanding of participant 
movement), skin temperature, blood volume pressure, 
heart rate, heartbeat inter-beat interval, and electroder-
mal activity (EDA). Once participants signed the study 
consent form, which was approved by the Stanford Uni-
versity Institutional Review Board, they were asked to 
put on and activate the sensor, which they wore during 
a 10-min pre-walk period. The purpose of this approxi-
mately 10-min pre-walk data collection was two-fold: (1) 
to allow for the sensor to make appropriate contact with 
the skin surface, and (2) to collect baseline electrodermal 
activity data for subsequent data analysis.

Mobile built environment audit tool application
This investigation was intended to determine the initial 
feasibility and utility of adding biometric sensor data to 
the built environment data collected with the DT app, 
which is typically embedded within a broader citizen 



Page 4 of 13Chrisinger and King  Int J Health Geogr  (2018) 17:17 

science community engagement research method called 
Our Voice. This method has been used successfully to 
study built and social environments in a variety of set-
tings [32], and features the simple DT mobile application 
to capture photos, audio narratives, and participant-
assigned valences for the specific built environment 
elements being captured (“Is this [built environment ele-
ment] good or bad for the community?”). The DT app 
also captures the geocoordinates of the user’s walking 
route and a short demographic survey upon completion 
of a walk. It additionally collects latitude and longitude 
coordinates every second while participants use it, and all 
photos taken with the app has geo-coordinates embedded 
in their metadata. A web portal for viewing DT partici-
pant data allows the research team to download sum-
mary data for each walk, including the walk route and 
locations of all photos and audio recordings. The full Our 
Voice process (not included in this pilot study) involves 
collection of geo-tagged photos and audio narratives with 
the DT mobile app, followed by facilitated community 
meetings to identify shared themes and build community 
consensus, in partnership with identified stakeholders, 
around how to address environmental issues negatively 
impacting resident health and well-being and [32, 33, 
36–39].

Depending on their preference, participants down-
loaded the DT from the Apple App Store or Google Play 
Store [40, 41], or used electronic tablets (Samsung Gal-
axy Tab E Lite 7”) that were made available to them and 
already contained the required DT app [42]. Participants 
were verbally instructed on how to use the DT app, and 
prompted to take photos and describe aspects of this 
neighborhood environment that they felt influenced their 
well-being or the functioning of these public spaces.

Neighborhood walks
Based on our community partner’s interest in existing 
and future public space projects in a specific neighbor-
hood of San Francisco, California, an approximately 
20-min walking route (0.9  miles) was predetermined 
to take participants through a variety of different envi-
ronments, including a small public green space, back 
alleys, and busy commercial streets. Participants were 
instructed to document anything along the route that 
they believed influenced their well-being or the function-
ing of these public spaces. A researcher accompanied 
groups of up to four participants at a time to direct them 
along the route and help troubleshoot any difficulties 
with the app or wearable sensor. Participants were also 
encouraged not to talk to one another during the neigh-
borhood walks. Following the neighborhood walk, partic-
ipants completed a short demographic survey embedded 
within the DT app, and returned the biometric sensor 

and tablet (if borrowed) to the investigators. Five groups 
participated over two separate days in August and Octo-
ber 2017, and group sizes ranged from one to four par-
ticipants, depending on participant availability.

Application stability issues related to the large quan-
tity of photos and audio recordings taken by some par-
ticipants caused the DT app images from several walks 
(n = 6) to be lost, though for two walks where audio files 
were recovered, the research team was able re-create the 
image in Google Street View by using the approximate 
location and subject being described in the audio file. 
For one of the participants without photo/audio data, the 
research team was also unable to recover biometric data. 
Biometric data were successfully downloaded and pro-
cessed for the remaining participants (n = 13).

Data processing
Each participant’s EDA data were normalized by sub-
tracting the minimum value and dividing by the range 
from their baseline data values, consistent with prior 
research using EDA data from the Empatica E4 biosensor 
[31]. To assist with comparisons between participants, 
each participant’s normalized EDA data were also cen-
tered (subtracting the mean) and scaled (dividing by the 
standard deviation of the centered data). To help identify 
sudden changes, or “peaks,” in EDA, a proprietary algo-
rithm from the company was applied to help remove 
erroneous readings, or “noise,” possibly caused by sudden 
motions or other non-EDA-related issues with the sensor. 
Skin temperature, 3-axis accelerometry, and EDA data 
files were provided as algorithm inputs; outputs included 
time-stamped peaks in EDA with characteristics such as 
peak amplitude and wavelengths.

Simple text processing was performed on participant 
audio narrative transcriptions using functions from the 
tm (“text mining”) package in R. To prepare the text for 
review, all letters were shifted to lowercase, very com-
mon words were removed, and a word frequency table 
was generated [43, 44]. This table was further grouped by 
nouns and adjectives, and words with a frequency greater 
than five were included in a visualization to compare the 
most prevalent terms across all participants.

Data visualization
Visualizations of each individual participant’s walking 
route while using the DT app were generated with leaf-
let, an open-source JavaScript visualization library, which 
we deployed within the R software environment [45–47]. 
Markers indicating the location of photos/audio narra-
tives taken were added to these maps, and two-dimen-
sional binned kernel density estimates were calculated to 
visualize clusters of positive and negative photos (using 
the bkde2D function of the KernSmooth package) [48, 
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49]. The walking route was color-coded by participants’ 
relative EDA levels during their walk, with peaks illus-
trated as additional markers of sizes according to their 
amplitude. These web-based visualizations were shared 
with participants via email, and their feedback was solic-
ited with an open-ended web-based survey. Interactive 
data maps were generated for participant feedback, but 
were not specifically analyzed as part of this study. These 
maps allowed participants to (1) reflect on data collected 
during the neighborhood walk; (2) see how EDA levels 
changed over the course of the walk in relation to objec-
tive neighborhood features (e.g., basemap and DT app 
photos); and 3) compare their data to other participants 
along the same route. An example data map is shown in 
Fig.  1, and an interactive example  is provided as Addi-
tional file 1.

Spatial and statistical analyses
The database underlying the participant walk map visu-
alizations described above was imported to a geographic 
information system software, ArcMap 10.5.1 [50], where 
a variety of spatial data (listed below) from the City of 
San Francisco had been pre-assembled [51, 52]. Spatial 
joins were performed to assign each walking route GPS 
coordinate several fields from these local data, in addi-
tion to the biometric data used in the visualizations: 
distance to the nearest positive- and negative-rated DT 
photo, distance to the nearest street intersection (as pos-
sible points of interest in terms of high traffic/activity), 
parcel characteristics (e.g., current land use, age of build-
ings), and street characteristics (e.g., name, one/two-way 
traffic pattern, classification as a highway, major, second-
ary, or local street).

In addition to summary statistics of participants’ EDA 
data by different spatial characteristics, two additional 
analyses were performed. First, the significance of spa-
tial clustering of positive and negative DT photos was 
assessed with the Optimized Hot Spot Analysis tool, 
which calculates the Getis-Ord Gi* local statistic (Gi*), 
a standardized measure of clustering for specified areal 
units (here, set as 5-m grid cells along the walk path) 
[53–55]. For this pilot, the top quintile of Gi* statistics 
were selected as the most highly clustered cells; this pro-
cedure was performed separately for positive and nega-
tive DT photos. A subsequent spatial join between these 
highly clustered cells and the participant walk data cre-
ated a binary variable for observations inside or outside 
of a clustered cell.

Second, a linear mixed model was fit on geo-located 
biometric data observations using R (via lmer in the lme4 
package) to identify associations between the main out-
come, participant EDA, with contextual walk measures 
as fixed effects [56, 57]: location inside or outside of a 

highly-clustered cell, location within 10  m of a street 
intersection, one/two-way traffic pattern and classifi-
cation of street, land use of the nearest parcel, age of 
building on the nearest parcel, and the observation’s 
time during the walk. A random intercept was specified 
to account for grouping of the study design: biometric 
observations within individuals (14 participants) within 
groups (5 walk groups). To illustrate possible within-sub-
ject variations, simple linear regression models were fit 
for three participants for EDA outcomes and whether the 
observation was taken in positive or negative DT cluster.

Results
In total, 14 adults (8 women and 6 men) who lived in the 
San Francisco Bay Area were recruited to participate as 
a convenience sample. Participants recorded 181 images 
(mean 15.1, SD 8.4) and 146 audio files (mean 12.2, SD 
8.6) with the DT app, and 5416 geo-located biometric 
data observations were collected from 13 participants 
(approximately 416 observations per participant). Fig-
ure  2 illustrates the spatial distribution of photographs 
taken with the DT app by the positive/negative valence 
assigned by participants for the built environment fea-
tures being captured.

Among captured images that were tagged with a partic-
ipant-coded valence (n = 131), just over half were positive 
(n = 77). Within-participant positive/negative valence 
ratios were similar, with most participants rating 53.0% of 
their images as positive (SD 21.4%). The average distance 
to a positive DT photo during a walk was 11.9 m, while 
the average distance to a negative photo was 14.7 m. In 
terms of the narratives participants used to explain their 
photographs in the DT app, several words were repeated 
frequently. The most common nouns used by partici-
pants in their audio narratives included “street” (n = 35), 
“building” (n = 29), and “people” (n = 25), while “nice” 
(n = 22), “safe” (n = 11), and “good” (n = 10) were the 
most common adjectives. Figure  3 provides a visualiza-
tion of all nouns and adjectives used by participants with 
an overall frequency greater than five.

Based on the Getis-Ord Gi* local statistic (estimated 
at a 95% confidence level), two significant clusters of 
positive DT photos comprised approximately 4.3% of 
the walk route (by distance), while negative photo clus-
ters represented 2.7% of the route, also in two significant 
clusters. Both of the significant positive clusters occurred 
within the first half of the walk route, and both significant 
negative clusters occurred within the second half, though 
both negative and positive DT photos were taken on all 
except one street during the course of the walk. Table 1 
summarizes the frequency of walk observations by a vari-
ety of environmental characteristics, including presence 
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inside of a positive or negative cluster, and Fig. 4 displays 
summary statistics for electrodermal activity across these 
characteristics. 

Based on the linear mixed model, statistically signifi-
cant positive associations were found between partici-
pant EDA and positive photo clusters (B = 0.14, p < 0.001), 
and significant negative associations were found between 
participant EDA and negative photo clusters (B = − 0.17, 
p < 0.001). This suggests that, on average, participants’ 
EDA was higher in areas where many participants docu-
mented more favorable features of the environment, and 
lower in areas where they documented less favorable fea-
tures. Other significant associations between EDA and 
walk characteristics were also observed, including the 
street type (significantly lower for highway, major, and 
secondary streets compared to local streets, p < 0.001), 
and land uses compared to parcels designated as “open 
space” (significantly higher near mixed/residential 
[p < 0.001] and residential [p = 0.033]; significantly lower 
near office [p = 0.003] and vacant buildings [p < 0.001]). 
The age of buildings also was associated with EDA, with 

older buildings seeing higher observations, compared to 
the most recent buildings. All models, 95% confidence 
intervals, and coefficients are displayed in Table 2.

Exploratory linear regression models for three indi-
vidual participants also showed significant relationships 
for presence in a positive or negative DT photo cluster, 
though they were of varying magnitudes and directions 
(see Table  3). Additionally, these regressions indicated 
that positive and negative clusters had far better explana-
tory value for some participants’ EDA than for others 
(e.g.,  R2 = 0.076 for Participant A3, vs.  R2 = 0.263 for Par-
ticipant B3).

Discussion
In this first-generation pilot investigation, we success-
fully assembled diverse technologies to collect and visu-
alize objective, perceived, and biometric data in an urban 
neighborhood context. These data collection methods 
provide researchers with a means of investigating both 
group and individual-level responses to different envi-
ronmental conditions.

Fig. 1 Example of an interactive webpage built for participants to view and interpret their data. The red and blue markers show where this specific 
participant took photographs with the DT app. The participant’s path is color-coded by their EDA level, from dark purple to yellow (low to high). The 
complete html file and underlying R code has been uploaded as Additional files 1 and 2
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In the case of the urban neighborhood walked by our 
participants, common perceptions of the built envi-
ronment were observed, both in terms of the repeated 
terms captured in DT narratives and the significant 
clustering of positive and negative DT photos. At the 
group level, linear mixed model testing confirmed that 
the average participant EDA levels observed inside a 
positive cluster were significantly higher than those 
observed elsewhere on the walk. Conversely, EDA 
observations inside negative DT photo clusters were 
significantly lower than those from outside them. Fur-
ther exploration is needed to understand the dimen-
sions of this relationship, though these preliminary 
statistical associations suggest that participants’ rat-
ings of the built environment were reflected in their 
stress responses. Additionally, significant correlations 
between objective measures of the built environment, 
such as land use and street type, and EDA also high-
light potentially influential relationships that could be 
more carefully tested with additional participant walks.

These data also illustrated the value of multi-dimen-
sional measurement at individual and group levels. While 
at least some participants may have been motivated to 

document similar built environment features, this did 
not mean that their interpretations were identical. For 
example, as shown in Fig. 5, two participants on the same 
walk captured images of a particular intersection that 
did not allow pedestrians to cross on all sides. For one 
participant, this represented a barrier, while the other 
rated it as a positive feature. While this was not a com-
mon occurrence, it is possible that future studies with 
additional participants, better measures of participant 
demographics (e.g., age, gender, length of residence in/
around the city, etc.) or a focus on a narrower geographic 
area will find similar discrepancies between individual 
assessments of the same feature. Furthermore, as Table 3 
illustrated, the strength of the relationship between EDA 
and participant-rated DT photos may not be consistent 
across all participants. Ultimately, this example under-
scores the importance of combining both objective and 
perceived built environment information in assessments.

Limitations
Another study limitation was the small number of resi-
dents included in this initial feasibility study to develop 
a systematic process for collecting and analyzing diverse 
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types of data geo-located data. Though the participant 
sample is small, these individuals produced a relatively 
large database of qualitative data in terms of photo 
(n = 181) and audio narratives (n = 146). Similar studies 
using the Discovery Tool application have found even 
small groups of participants (e.g., 8–10) are able to reach 

thematic saturation when identifying positive and nega-
tive features of a particular built environment [32]. Addi-
tionally, the fine-grained biometric data collection adds 
thousands of additional data points in which these photos 
and audio narratives can be contextualized. The methods 
we have described are easily scalable to accommodate 

Fig. 3 Visualization of nouns and adjectives with an overall frequency greater than five in all audio narratives
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many more participants, should future researchers desire 
to integrate them into crowd-sourcing initiatives, as in 
other quantified self projects [27].

In terms of logistical challenges, we encountered issues 
with mobile app stability during some walks because of 
the amount of image/audio data being collected, which 
resulted in the loss of photo and audio data for some 
participants. Our research team was able to retrieve or 
recreate some photos with Google Street View, and par-
ticipant experiences informed subsequent developer 
updates to the DT app (e.g., enabling reliable capture of 
larger quantities of images and audio narratives) along 
with an accompanying troubleshooting guide for new 
users.

Several methodological questions were also raised dur-
ing the course of the pilot, and should be considered in 
future research. First, the potential effects of having par-
ticipants walk in groups, as undertaken in this study, ver-
sus independently, are worth further consideration. It is 

likely—and was observed by some participants—that 
individuals felt more inclined to take photographs when 
they observed others in their group doing so. One par-
ticipant described this circumstance in an audio narra-
tive about a small church building along the route: “I find 
that when the person I’m on a walk with takes a photo of 
something, I want to take a photo of the same thing. But 
it’s true, this blue building is pretty excellent” (see Addi-
tional file 3).

Another methodological question relates to the use 
of the Empatica E4 sensor. While we used a 10-min 
pre-walk period to obtain a reasonable baseline meas-
urement, it is possible that longer time periods or data 
collected under different circumstances (e.g., walk-
ing vs. standing or sitting) may yield more complete 
or interpretable measures for participants outside of 
laboratory environments. Other researchers using 
the Empatica sensor may find additional utility in the 
multi-dimensional data it creates to identify “signals” 
within the EDA data, versus “noise” possibly caused by 
a participant’s motions, perspiration due to exertion, or 
other factors. The availability of such resources as the 
“EDA Explorer,” which integrates the sensor’s 3-axis 
accelerometry, skin temperature, and EDA data to more 
precisely estimate EDA changes, suggest that device 
developers are considering the implications of collect-
ing electrodermal data in ambulatory settings, perhaps 
a sign of future guidance on this topic [58, 59].

The neighborhood walk route was also the subject 
of methodological deliberations. While having partici-
pants walk the same route allowed for a more direct 
comparison between participants’ DT app and biom-
etric data, it also imposed a relatively arbitrary con-
straint on what has often been a more free-form built 
environment assessment in other Our Voice projects 
[32]. Additionally, this pilot study allowed participants 
to investigate a variety of urban spaces, though future 
iterations may pursue a more in-depth exploration of a 
single, specific space, such as a park or plaza. Quanti-
fied self researchers may also find utility in collecting 
individual geo-tagged biometric stress data over several 
hours or days in future “n-of-1” studies or interventions 
[60]. Importantly, the method described here is suffi-
ciently flexible to be tailored to the research questions 
of new projects, but provides key capabilities for col-
lecting and visualizing different kinds of objective and 
perceived participant data.

Ultimately, the questions raised during the study 
may also prompt deeper qualitative analyses. As a par-
ticipant eloquently summarized in one of her audio 
narratives:

Table 1 Summary of walk observations by environmental 
characteristics

n obs. % Total obs.

DT clusters

Inside positive 1122 21

Inside negative 1107 20

Street features

Intersection 416 8

One-way 3608 67

Two-way 1804 33

Local 2182 40

Secondary 155 3

Major 2619 48

Highway 456 8

Land use

Open space 315 6

Culture/education 357 7

Mixed use 312 6

Mixed use/residential 1241 23

Office 1716 32

Industrial 329 6

Residential 514 9

Retail/entertainment 248 5

Vacant 286 5

Building age

Post-1976 1604 30

1951–1975 196 4

1926–1950 1261 23

Pre-1925 1737 32
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There’s this interesting dichotomy that I don’t know 
how to express in a photograph which is the pleas-
ure of being in a complex urban environment bal-
anced with a serenity and beauty. Both are pleas-
ing, one is more intense which maybe might make 
you… maybe my biometrics feel aggravated or 
disoriented in some ways but that is one of the rea-
sons we love cities so we should not optimize out a 
sense of complexity and chaos because that too is 
beautiful.

Participant EDA Characteristics in  
Different Walk Environments  

Electrodermal Activity (EDA) 
-2 -1 0 1 2 

Positive 
Negative 

Intersection 
1.Local_Street 

2.Secondary_Street 
3.Major_Street 

4.Highway
One-Way
Two-Way

1.Open Space 
2.Culture/Education 

3.Mixed Use 
4.Mixed Use/Resid. 

5.Office 
6.Industrial 

7.Residential 
8.Retail/Entertain. 

9.Vacant 
1.Post-1976 

2.1951-1975 
3.1926-1950 

4.Pre-1925 

Land  
use 

Building  
Year 

Street 
Features 

DT  
Clusters 

Mean Median 

Fig. 4 Average and median EDA level observed by different walk 
environments (SD shown in brackets)

Table 2 Linear mixed model of participant EDA 
observations with group and participant-level random 
intercepts

Italic values are significant at p < 0.05

Electrodermal activity (EDA)

B CI p

Fixed parts

Time on walk 0.20 0.17 to 0.24 < .001

Positive photo cluster 0.14 0.06 to 0.23 < .001

Negative photo cluster − 0.17 − 0.25 to − 0.09 < .001

Intersection 0.05 − 0.04 to 0.15 .284

2-way street (ref:1-way) 0.15 0.07 to 0.23 < .001

Street type (ref:Local)

Secondary − 0.49 − 0.72 to − 0.27 < .001

Major − 0.17 − 0.24 to − 0.11 < .001

Highway − 0.47 − 0.61 to − 0.34 < .001

Land use (ref: open space)

Cultural − 0.11 − 0.31 to 0.08 .244

Mixed 0.10 − 0.11 to 0.30 .365

Mixed/residential 0.29 0.12 to 0.47 < .001

Office − 0.24 − 0.40 to − 0.08 .003

Industrial 0.09 − 0.09 to 0.28 .329

Residential 0.18 0.01 to 0.35 .033

Retail/entertainment 0.01 − 0.18 to 0.20 .924

Vacant − 0.38 − 0.55 to − 0.21 < .001

Missing − 0.08 − 0.32 to 0.16 .498

Building age (ref: 1976–present)

1951–1975 0.15 − 0.03 to 0.33 .107

1926–1950 0.10 0.01 to 0.18 .030

Pre-1925 0.09 0.02 to 0.17 .011

Unknown 0.32 0.16 to 0.48 < .001

(Intercept) 0.01 − 0.19 to 0.20 .932

Random parts

 σ2 0.854

 Npartid:(partgroup:time) 14

 Npartgroup:time 5

 Ntime 2

 Observations 5412

R2/Ω0
2 .119/.119

Table 3 Linear models of participant EDA observations showing within-subject correlations with positive/negative DT 
clusters

Italic values are significant at p < 0.05

Participant A3 Participant B3 Participant E3

B CI p B CI p B CI p

(Intercept) 0.03 − 0.11 to 0.16 .680 − 0.23 − 0.35 to − 0.11 < .001 0.30 0.18 to 0.42 < .001

Positive cluster 0.35 0.10 to 0.60 .007 1.15 0.93 to 1.38 < .001 − 0.50 − 0.74 to − 0.26 < .001

Negative cluster − 0.47 − 0.71 to − 0.22 < .001 − 0.17 − 0.40 to 0.06 .147 − 1.00 − 1.22 to − 0.77 < .001

Observations 362 347 397

R2/adj.  R2 .076/.071 .263/.259 .164/.159
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These pilot data provide a starting point for research-
ers and citizen scientists to “triangulate” between the 
objective, perceived, and embodied experiences of 
built environment spaces in ways that could lead to 
new insights, including the beauty of “complexity and 
chaos.”

Conclusion
Identifying elements of one’s environment—both 
observable and unobservable—that contribute to allo-
static load presents new opportunities to engage com-
munity residents in collecting and analyzing their 
personal data to mobilize potential environmental 
improvements. The current investigation provides a 
systematic process of collecting these three types of 
data, and lays a foundation for future spatial and statis-
tical analyses in addition to more in-depth interpreta-
tion of how these responses vary within and between 
participants. This type of multi-dimensional data col-
lection procedure could be integrated into future built 
environment or quantified self research projects where 

biometric data are also of interest to community mem-
bers, and our open-source mapping technology (R code 
provided as Additional file 2) allows for easier replica-
tion in different settings and projects. It sets the stage 
for additional research aimed at better understanding—
both qualitatively and quantitatively—how objective 
and perceived elements of the built environment influ-
ence our “lived” experience in different settings, which 
may impact people’s stress as well as well-being and 
quality of life.

Additional files

Additional file 1. Interactive Data Map. Geospatial visualization of partici-
pant data as an html file, suitable for viewing in a web browser. 

Additional file 2. R code. Sample R code for processing and visualizing 
participant Discovery Tool and biometric data.

Additional file 3. Example participant data maps. These two participants 
were on the same walk and took photographs of the same building. One 
(at right) observed that they noticed this influence: “I find that when the 
person I’m on a walk with takes a photo of something, I want to take a 
photo of the same thing. But it’s true, this blue building is pretty excellent.”

Fig. 5 Participant data maps. While these two participants also documented the same feature, they gave it different ratings and descriptions in 
terms of it being a positive or negative aspect of the built environment

https://doi.org/10.1186/s12942-018-0140-1
https://doi.org/10.1186/s12942-018-0140-1
https://doi.org/10.1186/s12942-018-0140-1
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