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Abstract 

Background: The increase in the frequency and intensity of extreme heat events, which are potentially associated 
with climate change in the near future, highlights the importance of heat health risk assessment, a significant refer-
ence for heat-related death reduction and intervention. However, a spatiotemporal mismatch exists between gridded 
heat hazard and human exposure in risk assessment, which hinders the identification of high-risk areas at finer scales.

Methods: A human settlement index integrated by nighttime light images, enhanced vegetation index, and digital 
elevation model data was utilized to assess the human exposure at high spatial resolution. Heat hazard and vulner-
ability index were generated by land surface temperature and demographic and socioeconomic census data, respec-
tively. Spatially explicit assessment of heat health risk and its driving factors was conducted in the Yangtze River Delta 
(YRD), east China at 250 m pixel level.

Results: High-risk areas were mainly distributed in the urbanized areas of YRD, which were mostly driven by high 
human exposure and heat hazard index. In some less-urbanized cities and suburban and rural areas of mega-cities, 
the heat health risks are in second priority. The risks in some less-developed areas were high despite the low human 
exposure index because of high heat hazard and vulnerability index.

Conclusions: This study illustrated a methodology for identifying high-risk areas by combining freely available multi-
source data. Highly urbanized areas were considered hotspots of high heat health risks, which were largely driven by 
the increasing urban heat island effects and population density in urban areas. Repercussions of overheating were 
weakened due to the low social vulnerability in some central areas benefitting from the low proportion of sensitive 
population or the high level of socioeconomic development. By contrast, high social vulnerability intensifies heat 
health risks in some less-urbanized cities and suburban areas of mega-cities.
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Background
Climate change, with global warming as the main feature, 
has become the biggest challenge for human health [1, 
2]. Extreme heat events (EHEs), as one of the most seri-
ous meteorological disasters, are projected to increase 
in frequency, intensity, and duration in the background 
of future climate warming [3]. Exposure to high ambi-
ent temperature not only is the leading cause of weather-
related morbidity (e.g., cardiovascular, cerebrovascular, 
and respiratory diseases) [4] but may also lead to human 
deaths in extreme cases. For example, two devastating 
heat wave in Europe in 2003 and Russia in 2010 led to a 
death toll of 70,000 and 55,000, respectively [5, 6]. The 
health implications of extreme heat events highlight the 
significance of studies on risk assessment and identifica-
tion of high-risk population. Climate change adaptation 
is also increasingly linked to natural hazard risk manage-
ment [7, 8].

There are ongoing observational studies that show a 
significant increase in the incidence and mortality of 
urban residents during EHEs [9, 10], which are associ-
ated with the urban heat island (UHI) whose effects are 
aggravated during heat waves [4, 11, 12]. Dousset et  al. 
[13] analyzed mortality in Paris during EHEs in the sum-
mer of 2003; results showed that mortality is related to 
the distribution of high nighttime temperatures generally 
driven by the enhanced UHI effects at night. Urban resi-
dents are therefore particularly vulnerable to severe and 
sustained heat stress [14, 15]. Spatially explicit identifica-
tion of high-risk hotspots will ensure appropriate devel-
opment of targeted prevention and mitigation of EHEs 
in a warmer future world considering the projected aug-
mentation in urban population and frequency of EHEs.

An increasing number of studies utilized the risk con-
ceptual framework proposed by Crichton [8, 16] to fully 
understand heat-related risk patterns. However, there 
usually exist two deficiencies in previous heat health risk 
assessment, which related to heat hazard and human 
exposure respectively. For heat-related health risk, haz-
ards refer to the possibility of EHEs occurring in a spe-
cific space where people live or engage in anthropogenic 
activities, characterizing the closeness of humans to 
EHEs [17, 18]. For a large study area, available air temper-
ature data are commonly from the sparse government-
operated stations. Those existing data are constrained 
by their spatial locations and are therefore inadequate 
for capturing the temperature gradient within a specific 
area. Previous studies on the association between ambi-
ent temperature and mortality also pointed out that the 
use of temperature data from sparse weather stations 
led to underestimation of the temperature effects [19]. 
In addition to coarse heat hazard information obtained 
from meteorological station [20, 21], satellite-derived 

land surface temperature (LST) data were increasingly 
used to measure heat risk because they offer spatially-
detailed heat-related information [22–25]. Moreover, it is 
noteworthy that although the synergies between UHI and 
heat waves have received increasing attention because 
of their potential health and environmental impacts [11, 
26], most studies on spatial heat hazard assessment only 
considered the daytime temperature but ignored the 
UHI-related nighttime temperature [23, 27], which may 
result in significant underestimation of heat health risk in 
urban areas.

For human exposure analysis, demographic data is a 
fundamental component of disaster risk models. Detailed 
population information is required to assess casualties, 
determine shelter needs, and properly implement evacu-
ation plans in pre-disaster and post-disaster phases [28, 
29]. The absence of population data is a major obstacle 
to decision-making and disaster relief in parts of the 
developing world due to the lack of data collection or the 
unavailability of useful accompanying geographical data 
[30]. Population density maps on the basis of census data 
lack sufficient spatial details of the geographically-het-
erogeneous population distribution within the border of 
the census units, leading to a spatial mismatch with spa-
tially explicit hazard data in risk assessment [17]. Emerg-
ing geospatial technologies, such as remote sensing and 
geographical information systems (GIS) techniques, 
are powerful tools for estimating population density at 
a finer scale. The GIS-based integration of multi-source 
remote sensing images can serve as a proxy for spatially 
explicit assessment of human exposure [24]. Therefore, 
the widely available datasets and the flexibility of GIS 
techniques make it possible to develop an effective and 
low-cost method for identifying the high exposure hot-
spots at finer scales, even for developing countries.

Currently, most studies on heat health risk assessment 
have been conducted in developed countries and mainly 
focused on cities. It is noteworthy that the spatial distri-
bution of heat risk in developing countries is generally 
less well known [15, 31]. Furthermore, existing stud-
ies have been mainly implemented at the administrative 
unit level while few attempts focus on the specializing 
of heat-related health risk at a raster level. In this study, 
we aim to assess heat-related health risk at regional scale 
and explore its driving factors at a high spatial resolution. 
Herein, we took the Yangtze River Delta (YRD) in east 
China as a case study. A composite heat risk index aggre-
gating three risk elements (heat hazard, human exposure, 
and vulnerability) was generated to improve the spatial 
delineation of heat health risk by comprehensive utili-
zation of multi-source data. The spatially explicit heat 
health risk map and its driving factors were explored at 
the 250 m pixel level across the YRD, which can provide 
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scientific foundation for effective resource targeting and 
beneficial program interventions with the least field-col-
lection efforts.

Methods
Study area
The YRD lies along the eastern coast of China, includ-
ing Shanghai, Hangzhou, Ningbo, Jiaxing, Shaoxing, 
Zhoushan, Huzhou, Taizhou, Nanjing, Suzhou, Yang-
zhou, Changzhou, Nantong, Wuxi, Zhenjiang, and 
Taizhou cities that are highly prosperous and populous 
(Fig.  1). The region is bounded by 116.78°E to 124.21°E 
and 26.99°N to 34.64°N and spread around 112,642 km2. 
The YRD is located in the subtropical monsoon climate 
zone with a humid monsoon climate. Its annual aver-
age temperature ranges from 18 to 23  °C, and the aver-
age annual rainfall is approximately 1500  mm. During 
summer the YRD is frequently threatened by EHEs due 
to the long-lasting impact of the west Pacific subtropical 
high [32]. In July and August, there are usually a total of 
20–30 hot days (daily maximum temperature ≥ 35  °C), 
with more than 40 hot days in some specific years. For 
example, in the summer of 2013, air temperature obser-
vations and the number of hot days in many cities of 
the YRD broke the historical records of the last 50 years 
[33]. The numbers of hot days were 47, 53, and 37 for 

Shanghai, Hangzhou, and Nanjing, respectively. In addi-
tion, the YRD has experienced unprecedented economic 
development and urban expansion in the past 4 decades 
[34], which has resulted in the intensified UHI effect and 
a large increase in the heat-related health risk [35, 36].

Data collection and pre‑processing
Satellite data

1. Temperature data. LST data based on moderate-
resolution imaging spectroradiometer (MODIS) on 
board the National Aeronautics and Space Admin-
istration (NASA) EOS Terra and Aqua satellites 
are distributed as the MOD11A1 (daytime) and 
MYD11A1 (nighttime) products [37]. The MODIS 
LST images include daytime and nighttime measure-
ments with spatial resolution of 1 km. In this study, 
we chose LST data from an exceptional hot day of 
August 7, 2013, with maximum air temperature 
exceeding 40 °C in many cities of YRD. Two clear sky 
LST images acquired at 10:30 a.m. and 1:30 a.m. were 
used. The MODIS reprojection tool was used for the 
mosaicking, reprojection, and resampling of original 
images, and the new LST images were generated with 
Albers conical equal area projection at the resolution 
of 250 m.

Fig. 1 Study area location, elevation, and land cover types
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2. Vegetation Index data. The MODIS enhanced veg-
etation index (EVI) dataset (MOD13Q1) in 2013 was 
freely downloaded from the NASA website at a reso-
lution of 250 m [37]. In comparison with the normal-
ized differential vegetation index, EVI was produced 
by further minimization of the atmospheric effects 
and background spectral signals and was more sen-
sitive to high biomass regions. To further eliminate 
cloud contamination and other noises, maximum 
value composite method was employed on the multi-
temporal MODIS EVI dataset to generate a new EVI 
composite ( EVImax ), as expressed in Eq. (1): 

where EVI1, EVI2, . . . , EVI23 are the original 16 d EVI 
images in the study area in 2013. Then, the MODIS 
reprojection tool was utilized for data mosaicking. 
The new EVImax image was re-projected into the 
Albers conical equal area projection.

3. Nighttime light data. The Defense Meteorologi-
cal Satellite Program’s Operational Linescan System 
(DMSP/OLS) images can monitor the lights associ-
ated with nighttime human activities. Since 1992, the 
National Geophysical Data Center annually releases 
global stable DMSP/OLS nighttime light composites 
that eliminated the cloud, accidental fire, and other 
noises with a spatial resolution of 30 arc-second 
[38]. The digital number (DN) values of DMSP/OLS 
data ranging from 0 to 63 and high DN values in the 
images generally indicate highly concentrated human 
activities or settlements. In this study, the original 
DMSP/OLS data for the year 2012 were projected 
and resampled to a new raster with Albers conical 
equal area projection at a resolution of 250 m.

4. Digital elevation model (DEM) data. The eleva-
tion data used in this study were downloaded from 
the website of ERSDAC of Japan [39], comprised 
the ASTER GDEM (Advanced Spaceborne Thermal 
Emission and Reflection Radiometer Global Digital 
Elevation Model) Version 2 with a spatial resolution 
of 30  m. The original DEM data were re-projected 
into Albers conical equal area projection and resam-
pled to a new image at a spatial resolution of 250 m 
to match other datasets.

Census data
Census-aged population data at the county level of the 
study area were derived from China’s Sixth National Cen-
sus in 2010. Other demographic and socioeconomic sta-
tistical data were obtained from the statistical yearbooks 
of Shanghai, Zhejiang, and Jiangsu provinces and from 
some local bureaus of statistics for the year 2013.

(1)EVImax = MAX(EVI1, EVI2, . . . , EVI23),

Heat health risk assessment framework
The characteristics of natural disasters and their impact 
depend not only on the frequency or intensity but also on 
the human exposure and vulnerability [40]. We utilized a 
spatial heat health risk assessment framework based on 
the Crichton’s risk triangle [16], which described risk as 
a function of hazard, human exposure, and vulnerability. 
For EHEs, heat hazard increased with enhanced tem-
perature and presented a spatial gradient. This enhance-
ment in temperature and resulting heat hazard index was 
measured using the satellite measured LST data across 
the YRD. A human settlement index integrated by multi-
source data was used to obtain the gridded human expo-
sure index, matching the hazard layer at the spatial scale. 
For heat vulnerability assessment, multiple demographic 
and socioeconomic indicators have been reported to 
associate with hot weather mortality in previous stud-
ies [41–43]. Based on literature review [44–47] and data 
availability, six indicators were chosen to construct a heat 
vulnerability index. We selected significant components 
through principal component analysis (PCA) and derived 
their spatial distribution. The normalized heat hazard 
index, human exposure index, and heat vulnerability 
index were multiplied by equal weights to develop a final 
heat risk index layer given that standard conclusion on 
the determination of weightings among each indicator in 
the current risk assessment did not exist [20, 41].

Hazard
Although the remote-sensed LST that describes the 
radiometric surface temperature cannot directly repre-
sent air temperature, many studies have shown the strong 
correlation between these two disparate data, particu-
larly at night [48, 49]. Satellite thermal data are therefore 
increasingly employed to estimate heat hazard [22–24, 
27]. The MODIS LST data were selected in this case for 
their increased spatial coverage, daily measurement, and 
thermal accuracy, which make it possible to capture com-
plex intra-urban gradient of surface temperature across 
the study area. Two clear sky LST images for daytime and 
nighttime during an exceptional heat wave were utilized 
for heat hazard analysis, considering the quality of LST 
image and cloud contamination in the study area [50]. 
Very few no-data pixels were replaced by the mean value 
of the surrounding 3 × 3  pixel. Then, two LST images 
were simply added and normalized to obtain the heat 
hazard index in the study area ranging from 0 to 1 using 
the ArcGIS software.

Exposure
The DMSP/OLS image was widely used as a valuable 
covariate for population density estimation across the 
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world [51, 52]. However, the application of this method 
is limited by the spatial resolution, overglow, and satura-
tion effects [53, 54]. By combining the vegetation indices 
(e.g. NDVI) and DMSP/OLS data, the saturation effect in 
DMSP/OLS data can be greatly reduced [55, 56]. By fur-
ther incorporating elevation information, Yang et al. [57] 
proposed an elevation-adjusted human settlement index 
(EAHSI) at 250  m resolution that can reduce errors in 
the population estimation among areas with complex ter-
rain. On the basis of the method proposed by Yang et al., 
an EAHSI at 250 m resolution was obtained in this study 
by combining DMSP/OLS night light images, EVI, and 
DEM data using the following formula:

where

The OLSnor is the normalized value of DMSP/OLS 
DN image, while OLSmax and OLSmin are the maximum 
and minimum DN values across the study area, respec-
tively. Correlation analysis between census population 
and EAHSI in the next section suggested a highly linear 
relationship (Fig.  4). Then, EAHSI was normalized to 
generate a heat exposure index ranging from 0 to 1 to 
characterize the human exposure of EHEs.

Vulnerability
Many studies suggested that the elderly are more sensi-
tive to EHEs because of their relatively special physiologi-
cal characteristics and low tolerance to high temperatures 
[45]. More pressingly, elderly who live alone experience 
difficulty in obtaining quick and effective aid under 
emergency conditions [58], exposing them to the con-
siderable threat of EHEs [59]. Meanwhile, individual or 
regional socioeconomic status plays a role in reducing 
the vulnerability of related populations. Higher socioec-
onomic status implies lower heat-related mortality [47]. 
Air conditioners are considered powerful tools to allevi-
ate the hazardous effects of high temperature [46, 58]. 
The occupant’s educational background and knowledge 
of environmental risks affect the individual’s cognitive 
ability and avoidance behavior to EHEs [20, 60], while 
the regional economic level and accessibility to medi-
cal resources and facilities generally determine human 
adaptability to EHEs [15].

Based on the review of existing literature and the data 
availability in the study area, six vulnerability variables 
were obtained at county level, including age (≥ 65), the 

(2)

EAHSI =
(1− EVImax)+OLSnor

1−OLSnor + EVImax +OLSnor × EVImax

× e
−0.003DEM

,

(3)
OLSnor = (OLS−OLSmin)/(OLSmax −OLSmin).

elderly who live alone (≥ 60), illiteracy or semi-illiteracy 
rates of population aged ≥ 15, total beds of health insti-
tutions, number of air-conditioning units per 100 house-
holds, and per capita GDP. PCA is the primary statistical 
procedure for constructing social vulnerability index fol-
lowing the methodology by Cutter et al. [61]. PCA could 
provide information about the spatial structure of the 
data [62], which enables a few independent components 
to capture the multi-dimensionality of social vulnerabil-
ity on the basis of underlying relationships between vari-
ables [63]. In this study, PCA was performed to a set of 
census variables with SPSS software, and the groups of 
variables with similar spatial patterns were identified as 
principal components. Once the principal components 
were produced, the heat vulnerability index was created 
by summing all the principal components using equal 
weighting according to their positive (+) or negative 
(−) effect on vulnerability. Finally, the heat vulnerabil-
ity index was re-normalized to [0, 1] and mapped at the 
county level.

Results
Heat hazard
As shown in Fig. 2, strong and heterogeneous UHI effects 
for both daytime and nighttime were apparent in the 
YRD under heat wave conditions. During daytime, the 
LST varied from 27 to 48 °C, which depicted obvious spa-
tial temperature gradient (Fig. 2a). The daytime hotspots 
were mainly distributed in the Z-shaped urban agglom-
eration in YRD, including Changzhou, Wuxi, Suzhou, 
Shanghai, Hangzhou, Shaoxing, and Ningbo (Fig. 2a). The 
LST was generally above 40 °C and reached a maximum 
of 45  °C in the downtowns of Hangzhou and Ningbo. 
Low daytime temperatures were observed in northern 
YRD and areas covered by forest and water bodies (such 
as Taihu Lake with LST ≤ 30  °C). During nighttime, the 
LST presented weaker temperature gradient across the 
YRD (Fig.  2b). Nighttime warming centers also concen-
trated in highly urbanized areas (≥ 30 °C) and expanded 
to neighboring area, demonstrating a considerable UHI 
effect at night. The lowest nighttime temperatures were 
observed in coastal areas and pixels covered by the flour-
ish vegetation in the southern area. The heat hazard index 
by combining the daytime and nighttime LSTs indicated 
that the highly-affected areas during EHEs in the YRD 
are generally concentrated in urban areas, resulting from 
the coupling effect of the UHI (Fig. 3).

Exposure
Figure  4 displays the scatter plot between the accumu-
lated EAHSI and the total population at county level in 
2013. The strong linear correlation, with  R2 equal to 0.87, 
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indicates that the EAHSI is a good proxy for the spatial 
delineation human exposure estimation in the YRD. The 
map of gridded human exposure index (Fig. 5) identifies 
a concentration of very high human exposure within the 
central areas of big cities, while moderate human expo-
sure was found in some less-urbanized cities.

Vulnerability
As shown in Table 1, many of the six vulnerability varia-
bles were significantly correlated. Using the PCA method, 
the principal components with eigenvalues greater than 
1.0 were used in the analysis (Table  2). These extracted 
factors were named based on their dominant loadings. 
The first factor, socioeconomic status, contributes 48.24% 
of the total variation among all the 6 variables. This factor 
is dominated by the variables that imply a high air condi-
tioner ownership, per capita GDP and total beds of health 
institutions, low illiteracy rates of population (≥ 15 years), 
and low percentage of the elderly (≥ 60  years) living 
alone. Overall, the first factor identifies a group of study 
units with higher socioeconomic level, which contributes 
to a lower heat vulnerability. As depicted in Fig. 6a, areas 
with high socioeconomic status were mainly distributed 
in the most developed study units such as the downtown 
of Shanghai, Nanjing, Suzhou, Wuxi and Nantong. These 
cities were characterized by high economic conditions, 

good medical service access, as well as a high percentage 
of educated population. The second factor, age, contrib-
utes 17.12% of the total variance. It identifies a group of 
units with a low percentage of population over 65 years 
old, which contributes to a lower heat vulnerability. Areas 
with a high percentage of elderly population were gener-
ally scattered throughout the northeast of the study area 
(Fig. 6b).

A composite heat vulnerability index based on the 
above two principle components was mapped in Fig. 6c. 
Very high heat vulnerability index values in the YRD 
were evident in the Rudong County of Nantong City, 
Chongming County of Shanghai, and mountainous areas 
in the southern YRD, which were mainly driven by the 
low economic and education level. In addition, vulner-
ability in some areas with relatively high economic level, 
such as the suburbs of Shanghai, were not significant 
but should not be ignored. Heat vulnerability in those 
areas was seemingly associated with a high percentage of 
elderly people, especially those living alone. Areas with 
low and very low heat vulnerability index values were 
generally scattered throughout the urbanized areas of 
Wuxi, Nanjing, Yangzhou, Hangzhou, Suzhou, Ningbo, 
and the downtown of Shanghai with generally high eco-
nomic level, mature infrastructure, and low proportion of 
population sensitive to thermal risk (such as the elderly).

Fig. 2 a Daytime land surface temperature (LST) and b nighttime LST in the Yangtze River Delta
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Heat health risk
The spatial pattern of heat risk index in YRD was 
obtained by equally weighted aggregation of three risk 
elements (Fig.  7). The majority of the high-risk areas 
are grouped together in the central urbanized areas of 
Changzhou, Yangzhou, Taizhou (Jiangsu Province), Jiax-
ing, Taizhou (Zhejiang Province), Cixi and Yuyao City 
of Ningbo. Notably, the heat risk index values are high 
in the northern area of the YRD (such as Xinghua City 
and Baoying County), the eastern coastal areas of Jiangsu 
(such as Hai’an County), and the rural areas of the 

southwestern study area, and this can be explained by the 
distribution of vulnerability index.

Driving factors
In addition to identifying the high heat health risk areas, 
it is also important for decision makers to recognize 
risk factors which play a leading role in forming these 
high risk areas. Here, pixels with medium or higher risk 
grade were considered as potential high risk areas. The 
heat hazard, human exposure, and heat vulnerability 
index were also reclassified into two grades in the same 

Fig. 3 Map of the heat hazard index of the Yangtze River Delta
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way. Then, the main driving factors that contributed to 
potential high heat risk areas in the YRD were identified 
(Fig.  8). For example, the legend “Hazard/vulnerability” 
in Fig.  8 means that both heat hazard and heat vulner-
ability grades were high whereas the heat exposure was 
low in the corresponding area. Heat hazard and heat vul-
nerability were therefore defined as the driving factors of 
high heat risk.

Risk areas driven by a single factor, which accounted 
for only 2.62% of the potential risk area, were less dis-
tributed, as depicted in Fig.  8. The heat risk patterns in 
31.76% of the area were mostly driven by the distribu-
tion of heat hazard and human exposure, particularly 
in highly-urbanized areas of the YRD. However, in the 
suburbs encircling the city centers and in urban areas of 
some relatively small cities (e.g., suburbs of Shanghai), 
high vulnerability also contributes to the high risks. The 
heat health risks in some less-developed areas, with low 
human exposure index in the south and north sections 
of the YRD, remained high due to the assigned high heat 
hazard and heat vulnerability grades.

Discussion
Previous studies have pointed out the necessity for heat 
health risk assessment at a finer scale [21, 23]. Given 
the lack of attempts of spatially explicit assessment for 
heat health risk, especially in developing countries, this 
study developed a methodology built on previous risk 
assessment framework and aggregating the knowledge 
and technologies from GIS, remote sensing and epide-
miological sciences. By fully considering heat hazard, 
human exposure, and multidimensional vulnerability 
and integrating multi-sensor remote sensing images and 
sociodemographic data, the GIS-based methodology 
has been designed to be transparent and to make use of 
readily freely available data. The resulting pixel-level heat 
health risk map and the identification of driving factors 

can convey more information for understanding spe-
cific human risk during EHEs. It is particularly valuable 
in guiding local planners to develop more efficient miti-
gation and adaptation planning in developing countries 
with limited cost, time, and labour.

Previous studies pointed out that the daily minimum 
temperatures in the urban area were considerably higher 
than those in the rural area because of UHI effects [64, 
65], thereby exacerbating the heat health risk on urban 
residents [27]. However, most spatial heat health risk 
studies only considered the daytime high temperature 
and generally omitted the impact of nighttime high tem-
perature due to the nocturnal UHI effect. Here, cloud-
free MODIS LST images were adopted to represent heat 
hazard during an exceptional heat wave. The nighttime 
LST data, which were restricted to only thermal infra-
red radiance from the ground, are considered a powerful 
proxy to more accurately represent the spatial distribu-
tion of UHI than the daytime LST [66]. Comprehensive 
analysis of the heat hazard in the YRD illustrated that 
both daytime and nighttime LSTs in urban areas were 
generally higher than those in rural areas. Therefore, 
urban residents were more likely to suffer from lasting 
heat stress at both day and night during EHEs, which 
agreed with similar work performed in other countries 
[13, 65, 67].

A better understanding of human exposure to EHEs 
required precise and spatially explicit estimation of pop-
ulation distribution [22, 24, 68]. In comparison with the 
previous studies based only on census population data, 
the present study conducted human exposure assess-
ment at high spatial resolution by integrating multisource 
satellite images, thereby bridging the spatial mismatch 
with heat hazard layer. This represents a clear contribu-
tion that can lead to a better estimation of disaggregated 
exposure and risk at finer scales. The method for grid-
based exposure assessment is characterized by the wide 
application of the readily available remote sensing data 
and flexibility of GIS technique.

It is now widely appreciated that spatial viabilities in 
demographic characteristics and socioeconomic status 
are key contributors to overall vulnerability to extreme 
weather events [41]. In this study, six heat vulnerabil-
ity-related variables were represented by two principal 
components through PCA analysis to create the final 
heat vulnerability map. Our vulnerability map in YRD 
agree with the results by Chen et  al. [69], which sug-
gested that highly urbanized areas are generally much 
less vulnerable than rural areas. According to the PCA 
analysis, there exists inequity in the allocation of social 
resources like education opportunities and medical ser-
vices between urban and rural areas. Areas with the high 
socioeconomic level are city districts. However, some of 

Fig. 4 Scatterplots of the accumulated EAHSI value and population 
of counties of the Yangtze River Delta
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these places exhibit other dimensions of vulnerability. For 
example, Nantong City of Jiangsu Province ranks high on 
socioeconomic status while have a relatively high per-
centage of elderly people. Therefore, by separating vari-
ous dimensions of vulnerability, it is possible for decision 
makers to understand what contributes to vulnerability 
and decide tailored adaptation strategies.

However, there are still some limitations that should 
be pointed out in this study. Firstly, the verification of 
the results becomes a significant gap because health and 

mortality records associated with previous EHEs in YRD 
are not available. Hospital data can be helpful in quanti-
tative validation of heat health assessment, although the 
utility may be limited due to its restricted availability at 
temporal and spatial scales.

Secondly, we only considered the LST for the hazard 
analysis in this study, but the impact of EHEs on pub-
lic health is in fact a function of temperature, humidity, 
wind speed, and other meteorological and environmen-
tal factors [15, 22]. Some studies demonstrated that the 

Fig. 5 Map of the heat exposure index of the Yangtze River Delta
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effects of air pollutants as confounders of the UHI would 
pose a serious threat to public health [15]; meanwhile, 
the “urban dry island” effect may potentially alleviate 
heat stress to a certain extent [70]. The synergies between 
temperature and the factors mentioned above should be 
further considered in future hazard analyses.

Thirdly, grid datasets for demographic and socioeco-
nomic indicators are essential for vulnerability assess-
ment but are not available at resolutions needed. In the 
current study, for the three risk elements, grid-based 
assessments on heat hazard and human exposure were 
conducted at a fine spatial resolution using multi-sen-
sor remote sensing data. The spatial mismatch between 
exposure and hazard was therefore overcome. Still, the 
required grid-based datasets for other socio-economic 
vulnerability indicators at a finer resolution are not avail-
able for the study area. Therefore, the resulting vulner-
ability assessments were inevitably homogeneous within 
the border of the administrative units, and the spatial 
mismatch between vulnerability and other risk elements 

still exist in the current study. Furthermore, some vul-
nerability variables could not be considered due to the 
data availability. For example, although people with pre-
existing illness are quite vulnerable to high temperature 
because of their limited mobility and self-care ability [15, 
27], this important variable was not considered in this 
study because these data are unfortunately unavailable at 
the county level due to privacy. Moreover, based on the 
epidemiological evidence that the elderly are the most 
vulnerable subgroup to extreme heat and data availability 
[71, 72], we therefore chose the percentage of the elderly 
who live alone as social isolation proxy in heat vulner-
ability assessment following recent studies [73, 74]. Other 
factors such as home relocation, friends, social support, 
social participation, and social networks are not included 
because these data are not available in China census 
databases.

Finally, although previous literature shows the dispa-
rate contribution of heat hazard, human exposure, and 
heat vulnerability to human health during EHES, there 

Table 1 Spearman’s correlation values for vulnerability variables (n = 76)

All values are statistically significant at p < 0.001 except for those in italics

Percentage 
of the elderly 
(≥ 60 years) living 
alone

Percentage 
of population 
over 65 years old

Illiteracy or semi‑
illiteracy rates 
of population 
(≥ 15 years)

Per capita 
GDP (RMB 
Yuan)

Total beds 
of health 
institutions

Air conditioners 
per 100 
household

Percentage of the 
elderly (≥ 60 years) 
living alone

1.00

Percentage of popula-
tion over 65 years 
old

0.07 1.00

Illiteracy or semi-illiter-
acy rates of popula-
tion (≥ 15 years)

0.49 0.20 1.00

Per capita GDP (RMB 
Yuan)

− 0.39 − 0.48 − 0.40 1.00

Total beds of health 
institutions

− 0.26 − 0.19 − 0.37 0.38 1.00

Air conditioners per 
100 household

− 0.44 − 0.28 − 0.47 0.61 0.46 1.00

Table 2 Principle component analysis result of social vulnerability

Components Eigenvalue Percentage variance 
explained

Variables Loadings

(1) Socioeconomic status 2.667 48.24 Air conditioners per 100 household 0.818

Per capita GDP (RMB Yuan) 0.801

Illiteracy or semi-illiteracy rates of population (≥ 15 years) − 0.715

Percentage of the elderly (≥ 60 years) living alone − 0.649

Total beds of health institutions 0.641

(2) Age 1.018 17.12 Percentage of population over 65 years old − 0.769
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Fig. 6 Maps of principle components a socioeconomic status, b age and c the heat vulnerability index of the Yangtze River Delta
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are no standard weights that are widely applied [20, 41]. 
The identification of weightings required further knowl-
edge about the relationships between all three elements 
in the specific location. Therefore, three risk elements 
among our heat risk index were weighted equally. Previ-
ous studies have used equal weighting with success for 
various factors to estimate heat health risk [21, 23, 27, 
75]. Moreover, weightings can be easily modified accord-
ing to new available knowledge and specific local author-
ity requirements [23].

Conclusion
This study presents a methodology for spatial heat 
risk assessment by combining freely available multi-
source data, which allows for greater replicability in 
many other countries, especially in developing coun-
tries. Spatially, areas with higher heat hazard and 
human exposure are mainly concentrated in highly 
urbanized areas, which largely resulted in high heat 
health risk in the urban areas. However, the health 
effects of overheating during EHEs could be weak-
ened due to low social vulnerability (associated with a 

Fig. 7 Map of the heat health risk index of the Yangtze River Delta region
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low proportion of sensitive population or a high level 
of social and economic development) in some areas, 
especially Hangzhou, the central area of Shanghai, 
and Nanjing City. By contrast, high social vulnerabil-
ity plays an important role in high heat health risk in 
some less-urbanized cities and in the suburban areas 
of mega-cities. Low-risk areas are generally found 
in high-altitude areas. The resultant heat health risk 
map is potentially applicable to decision makers when 

considering tailored adaptation strategies and emer-
gency planning of heat risk.
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Fig. 8 Driving factors of heat health risks in the Yangtze River Delta region
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