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METHODOLOGY

Border analysis for spatial clusters
Fernando L. P. Oliveira1*, André L. F. Cançado2, Gustavo de Souza3, Gladston J. P. Moreira4 and Martin Kulldorff5

Abstract 

Background: The spatial scan statistic is widely used by public health professionals in the detection of spatial clusters 
in inhomogeneous point process. The most popular version of the spatial scan statistic uses a circular-shaped scan-
ning window. Several other variants, using other parametric or non-parametric shapes, are also available. However, 
none of them offer information about the uncertainty on the borders of the detected clusters.

Method: We propose a new method to evaluate uncertainty on the boundaries of spatial clusters identified through 
the spatial scan statistic for Poisson data. For each spatial data location i, a function F(i) is calculated. While not a prob-
ability, this function takes values in the [0, 1] interval, with a higher value indicating more evidence that the location 
belongs to the true cluster.

Results: Through a set of simulation studies, we show that the F function provides a way to define, measure and 
visualize the certainty or uncertainty of each specific location belonging to the true cluster. The method can be 
applied whether there are one or multiple detected clusters on the map. We illustrate the new method on a data set 
concerning Chagas disease in Minas Gerais, Brazil.

Conclusions: The higher the intensity given to an area, the higher the plausibility of that particular area to belong 
to the true cluster in case it exists. This way, the F function provides information from which the public health practi-
tioner can perform a border analysis of the detected spatial scan statistic clusters. We have implemented and illus-
trated the border analysis F function in the context of the circular spatial scan statistic for spatially aggregated Poisson 
data. The definition is clearly independent of both the shape of the scanning window and the probability model 
under which the data is generated. To make the new method widely available to users, it has been implemented in 
the freely available SaTScanTM software www.satscan.org.

Keywords: Spatial scan statistic, Border analysis, Cluster delineation, Disease surveillance, Disease mapping

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Spatial statistical analysis is commonly used by epi-
demiologists and public health professionals to study 
geographical disease patterns. For instance, in disease 
surveillance, spatial cluster detection techniques are 
often used to detect areas with excess disease incidence, 
prevalence or mortality [1–10]. Different types of spatial 
scan statistics are the most commonly used methods for 
the detection and statistical inference of spatial disease 
clusters [11–26]. They have been used in many differ-
ent locations for a wide variety of diseases [10, 27]. For 
example, they have been used to analyze the geographical 

distribution of Dengue fever in Guangdong Province 
[28], malaria hot spots in Kenya [29], the geography of 
bovine tuberculosis in the Madrid region [30] and the 
spatial variation inpost-injury quality of life outcomes in 
Vancouver [31] and gastric cancer [32].

The key feature of all spatial scan statistics is that they 
adjust for the multiple testing inherent in the many 
potential cluster locations and sizes that are evaluated. 
Equally important, they can adjust for heterogeneous 
population densities as well as any number of confound-
ing variables such as age or socio-economic factors. 
Moreover, most spatial scan statistics are applicable to 
point data as well as to aggregate data.

One limitation of the spatial scan statistic is that it 
is not possible to determine the exact borders of the 
detected clusters. While the spatial scan statistic will 
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generate a well-defined most likely cluster, which is the 
cluster that is least likely to have occurred by chance, 
there are almost always many highly overlapping clus-
ters of almost the same magnitude or strength. That is, 
if the most likely cluster is statistically significant, there 
will be many other statistically significant clusters with 
only slightly different boundaries, and with a p-value that 
is almost as small. The reason for this is that moving the 
scan window slightly so that a few additional locations 
get included or excluded from the cluster will not change 
the likelihood function very much in either direction.

When presenting the results from a spatial scan statistic 
analysis on a map, one option is to show all the statistically 
significant clusters. With hundreds or thousands of such 
highly overlapping clusters, such a map creates more confu-
sion than clarity, and many of those clusters are significant 
just because a small part of the cluster has a large number 
of disease cases, while other parts of the cluster could be 
empty. A better approach is to present a limited collection 
of some of the clusters with the highest likelihood.

One key question is how to decide what collection of 
clusters to present as part of the results and/or visualize on 
a map. For example, is it better to present two small non-
overlapping clusters or one larger cluster that contains the 
two smaller ones? The standard approach is to present 
the most likely cluster as well as any secondary clusters 
that do not overlap with the more likely present cluster. 
Boscoe et al. [33] and Chen et al. [34] proposed using not 
only the likelihood and statistical significance, but also the 
observed relative risk when determining which clusters to 
depict on the map. A newer alternative approach is to use 
the Gini coefficient to determine an appropriate collection 
of non-overlapping clusters to present [35].

While it is normally advisable to only report non-
overlapping clusters, or at most a few overlapping ones, 
this can lead to a false sense of certainty with respect to 
the cluster borders. A key question is then whether the 
reported cluster boundaries are reliable or not. None of 
the approaches mentioned above will provide any direct 
information about the uncertainty in the cluster borders. 
Are all the locations within the detected cluster equally 
likely to belong to the true cluster? Are there some areas 
outside the detected cluster that could potentially be part 
of the true cluster? A true cluster is an area for which the 
underlying risk of the disease is higher when compared to 
the risk outside it [15]. Boundary questions are of course 
relevant for many different types of spatial analyses, and 
the issue has been well studied outside the realm of scan 
statistics [36–39]. For example, Goovaerts et al. [40] pro-
posed a criterion to measure the uncertainty of each area 
being part of a putative spatial cluster.

For spatial scan statistics, one option for studying the 
cluster boundaries is to use an elliptic or non-parametric 

spatial scan statistic rather than the circular version. The 
circular spatial scan statistic has some limitations concern-
ing the detection of irregularly shaped clusters [41], and in 
such cases, the circular scan statistic can never perfectly 
delineate the true borders of the cluster. While an irregular 
shaped cluster will typically have a higher likelihood, their 
boundaries may not necessarily more accurate [41].

The first attempt to evaluate the uncertainty in the 
specification of spatial clusters calculated an intensity 
function for Oliveira et al. [42]. For each data location on 
the map taking values in the range [0,1]. A higher value 
means more confidence that the location is in the true 
cluster. If there is more than one true cluster, the value 
reflects the confidence that it is in the primary clus-
ter. The details of the intensity function are described 
in "Spatial scan statistic for Poisson data" section of this 
paper. For now, we just want to point out that the method 
tends to propose many locations outside the detected 
most likely cluster that, maybe, should be part of the 
cluster, while seldom proposing that any location inside 
the cluster does not belong there.

In this paper, we propose an alternative to the intensity 
function, which we call the F function. Like the former, 
the F function is calculated for each data location on the 
map, taking values in the [0,1] range. It is a more refined 
technique though, in two ways. Firstly, it will suggest part 
of the detected cluster that may be less likely to belong to 
the true cluster, as well as locations outside the detected 
cluster that could potentially be part of the true cluster. In 
effect, it gives a fuzzy cluster boundary with uncertainty 
on both sides of the detected cluster boundary. Secondly, 
unlike the intensity function, it provides a boundary anal-
ysis for both the primary and any number of secondary 
clusters detected. Such information provided by the F 
function can be highly valuable, for instance, in epidemi-
ological cluster investigations, where a public health pro-
fessional may wish to expand outside the detected cluster 
area to examine additional observed cases. In this case, 
the F function can help to decide in what directions to 
expand the investigation.

In a simulation study with known true clusters, we 
show that on average, the F function performs very well 
in depicting the uncertainty in the cluster boundaries. 
We also illustrate the method on a real data set, look-
ing at Chagas disease in Minas Gerais, Brazil. The new 
method has been implemented in the free and user 
friendly SaTScanTM software (www.satscan.org), so that 
it can be easily used by the interested reader and public 
health practitoners.

The rest of this paper is organized as follows. In "Spa-
tial scan statistic for Poisson data" section we offer a 
brief review of the spatial scan statistic for discrete 
Poisson data. In "The F function for clusters boundary 

http://www.satscan.org


Page 3 of 10Oliveira et al. Int J Health Geogr  (2018) 17:5 

uncertainty" section we present the new method for 
boundary evaluation, using the [0,1]-valued F function 
to represent the uncertainty in the boundary of the spa-
tial scan statistic clusters detected. Section "A simulation 
study" presents a simulation study conducted with arti-
ficially generated data, using known true clusters. A real 
data application is presented in "Example: chagas disease 
in newborns in Minas Gerais" section, looking at Chagas 
disease in Minas Gerais. Finally, some remarks and topics 
for future research are discussed in "Discussion" section.

Spatial scan statistic for Poisson data
While the principles of the new border analysis described 
in this paper can be applied to many different types 
of scan statistics, we will consider its implementation 
for the circular purely spatial scan statistic for spatially 
aggregated Poisson data. For the sake of completeness, 
we briefly review that method here.

For the spatial scan statistic, statistical inference for the 
detected clusters is performed through a likelihood ratio 
test, as follows [11]. Assume that we have a collection of 
data locations across a map, indexed by i = 1, . . . ,K . For 
example, these may be postal-code areas or census tracts. 
Next, consider a set Z of a large number of zones gen-
erated by considering different collection of neighboring 
locations. Kulldorff [11] does not make any assumption 
regarding the shape of the zones, but the set of zones is 
commonly the collection of all circles that are centered 
on one of the data locations, with some upper limit on 
their size. The set of zones could also be a different col-
lection of circles, a collection of ellipses [16], or a collec-
tion of irregular shaped zones created in a variety of ways 
[13–15, 17, 24, 41].

For each location i, the number of disease cases ci fol-
lows a Poisson distribution with pi ∗ ni expected cases, 
where ni represents the population or covariate adjusted 
population in location i, and N =

∑K
i=1 ni. Under the null 

hypothesis, pi = p for all i. Under the alternative hypoth-
esis, there is a zone z ∈ Z, such that pi = p for all i ∈ z , 
while pi = q for all i /∈ z, with p > q. The test is condi-
tioned on the total number of cases C =

∑K
i=1 ci.

It can be shown that the likelihood function for the 
above is

The likelihood ratio test statistic is given by

where L0 is the likelihood function under the null 
hypothesis

(1)L(z, p, q) =
e−pnz−q(N−nz)

C!
pczqC−cz

(

∏

i

ni

)

.

(2)� = sup
z∈Z,p>q

L(z, p, q)

L0
, p, q ∈ [0.1],

Notice that the test statistic is maximized over all zones 
z ∈ Z, thus identifying the zone that constitutes the most 
likely cluster. This is the cluster that is least likely to have 
occurred by chance.

As is customary we will use the log-likelihood ratio 
LLR = log � instead of � as the test statistic.

There is no closed form expression of the distribu-
tion of the spatial scan test statistic �. The statistical sig-
nificance of the most likely cluster of observed cases is 
instead computed through Monte Carlo hypothesis test-
ing [43]. This is done by generating a large number, say 
M = 999, of random data sets generated under the null 
hypothesis, conditioned on the total number of observed 
cases. The use of M = 999 is a standard choice in the 
literature [44–47]. Inference will be more accurate as M 
increases and M = 999 offers a good trade off between 
accuracy and computational effort. The test statistic is 
then calculated for each of those 999 random data sets, 
and these are compared to the test statistic from the real 
data set. If the latter is among the highest 5%, then it is 
significant at the α = 0.05 level. The Monte Carlo based 
p-value is p = R/(M + 1), where R is the rank of the test 
statistic from the real data set (see, for instance, [48]).

The F function for clusters boundary uncertainty
When the spatial scan statistic detect a cluster, we can 
trust the general location and size of the cluster, but 
there is always uncertainty in the exact border. Some 
areas inside the detected cluster may not be part of the 
true cluster, while some areas outside the detected cluster 
could be part of the true cluster. One reason for the dis-
crepancy can be that the shape of the true cluster is not 
one of the cluster shapes used by the spatial scan statis-
tic, but that is not the only reason. Even if the true cluster 
is among the scanning windows used, parts of the true 
cluster will have fewer cases than expected, and if they 
are on the border of the cluster, they may fall outside the 
detected cluster. Likewise, some areas outside the true 
cluster will by chance have more cases than expected, 
and if these cases happen to be just outside the true clus-
ter they may be included in the detected cluster. While 
it is not possible to determine the true cluster borders 
with certainty, it is possible to provide some informa-
tion regarding the uncertainty in the cluster boundary, by 
using the F function that will now be described.

The basic premise of the F function is the following. 
For each data location or administrative area i, such as 
postal-code areas or census tracts, the F(i) function will 
take a value in the range [0,1]. A higher value means that 
there is more evidence that the location is part of the true 

L0 =
e−C

C!
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C

N

)C
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∏

i

ni
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.
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cluster, while a lower value means that there is less evi-
dence. When F(i) = 0, there is no evidence that the loca-
tion is part of the true cluster. While the F function only 
takes values in the [0,1] range, it should be interpreted as a 
fuzzy possibility.

The first step when calculating the F function is to gen-
erate M randomly drawn bootstrap replicates of the case 
data. Conditioned on the total number of cases, this is 
done in the same way as one generate the random data 
sets for Monte Carlo hypothesis testing, except that 
data is not generated under the null hypothesis. Instead, 
the observed counts in the real data set are used as the 
expected counts when generating the random data sets. 
This means that an area with an excess number of cases 
in the real data set will generally also have an excess 
number of cases in the random data sets, but sometimes 
more and sometimes less than in the real data.

In formal language, for each administrative area i, 
i = 1, . . . ,K , the number of simulated cases si is randomly 
distributed with ci expected counts, where ci is the observed 
number of cases in the real data set. Since we condition on 
the total number of cases, 

∑

i si =
∑

i ci = C , and the ran-
dom data replication is generated by randomly distributing 
the total number C of cases among the K areas according to 
a multinomial distribution, with the probability associated 
to area i to be ci/C. This procedure is repeated M times 
with M large, for example 1000.

As the second step, we apply the spatial scan statistic 
on each of the M randomly generated data sets. For each 
data set m = 1, . . . ,M, we find the most likely cluster, 
which is the one that maximized the log likelihood ratio 
test statistic described in the previous section.

For each random data set m = 1, . . . ,M construct the 
binary K-dimensional row vector MLCm with the i-th 
entry (MLCm)i defined by

and consider the M × K  matrix 
MLC = [MCL1 . . .MCLM]T . That is, 
MLC =

(

MLCij

)

m×K
 with (MLCm)i = 1 if the most likely 

cluster found in the m-th iteration contains region i, and 
MLCmi = 0 otherwise.

As the third step, we define the F function as the real-
valued function F : {1, . . . ,K } −→ [0, 1] giving for region 
i the value

It is clear from Eq. (3) that the F function is defined 
throughout the whole geographic region under analysis 
and that it takes values in the interval [0, 1].

(MLCm)i =

{

1, if location i belongs to the most likely cluster

0, otherwise
,

(3)F(i) =
1

M

M
∑

m=1

(MLCm)i, i = 1, . . . ,K .

In summary, the procedure consists of the following 
three steps:

(1) Conditioned on the total number of cases, a set 
of M random data set is generated. The expected 
number of cases in location i is set equal to the 
observed number of cases in that location, using a 
multinomial distribution.

(2) The spatial scan statistic is applied to each of the 
randomly generated data sets with the original pop-
ulation based expected counts. For each random 
data set, note which of the locations i belong to the 
most likely cluster.

(3) For each location i, find how many of the M most 
likely clusters contain location i. The F(i) function is 
defined as the proportion of those most likely clus-
ters that contain location i.

Extension to multiple detected clusters
Above we have defined the F function for the special case 
when there was only one cluster detected in the data. In 
many situations, there are multiple non-overlapping clus-
ters found in different areas of the map. When multiple 
non-overlapping clusters have been detected, the F func-
tion will be defined in the same way with one exception. 
Suppose there were D non-overlapping clusters found in 
the real data set. In the second step, we will not only find 
the most likely cluster, but the D most likely non-over-
lapping clusters, using exactly the same procedure as for 
the real data set. The i-th entry of the vector MLCm will 
then be equal to one if location i is in any of the D most 
likely non-overlapping clusters. Since non-overlapping 
clusters can be defined in different ways, it is important 
that the same definition is used when finding the collec-
tion of non-overlapping clusters in the real and random 
data sets.

Comparison with the intensity function
Compared to the F function, the previously proposed 
intensity function [42] is similar in one way and very 
different in another way. The similarity is that the M 
bootstrap data sets are generated in exactly the same 
way, using the observed counts from the real data as the 
expected counts for the simulated data sets. They are 
also the same in the way that the spatial scan statistic is 
applied to the random data sets. The big difference is how 
the function is calculated.

The intensity function is calculated as follows. For each 
of the M simulated data sets, the most likely cluster is 
found, that is, the cluster with the maximum log likeli-
hood ratio (LLR) test statistic. These maximum LLRs are 
then ranked from low to high. Together, they form a set 
of M ranked log likelihood maxima. As the next step, one 
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takes each location i in turn, and finds the collection of 
random data sets in which location i belongs to the most 
likely cluster. Among this collection, we find the one with 
the highest log likelihood ratio test statistic, and we note 
its rank. If the rank is R, then the intensity function is 
defined as q(i) = R/M (for details see Oliveira et al. [42]).

Here are five examples of the intensity function q(i), 
and how it compares with the F(i) function.

(A) If location i is part of the most likely cluster in all 
the random data sets, then it is obviously part of the 
one that generated the highest LLR test statistic, so 
the rank is M, and q(i) = M/M = 1. We also have 
F(i) = M/M = 1.

(B) If location i was a member of the most likely clus-
ter in only one of the simulated data sets, and if the 
maximum LLR test statistic from that data set was 
higher than from any of the other simulated data 
sets, then R = M and q(i) = M/M = 1. As a con-
trast, F(i) = 1/M.

(C) If location i was a member of the most likely clus-
ter in only one of the simulated data sets, and if the 
maximum LLR test statistic from that data set was 
higher than exactly half of the other simulated data 
sets, then R = M/2 and q(i) = (M/2)/M = 1/2 . 
As a comparison, F(i) = 1/M.

(D) If location i was a member of the most likely clus-
ter in only one of the simulated data sets, and if the 
maximum LLR test statistic from that data set was 
lower than from any of the other simulated data 
sets, then R = 1 and q(i) = 1/M. Here we also have 
F(i) = 1/M.

(E) If location i is not part of the most likely cluster in 
any of the simulated data sets, then both q(i) = 0 
and F(i) = 0.

Note that, by definition, q(i) ≥ F(i) for all i. Note also 
that q(i) = 0 if and only if F(i) = 0.

Notice that while F values are frequencies and thus 
evaluate statistical significance, q values rank likelihood 
ratios and thus evaluate how strong the cluster is.

A simulation study
We evaluated the performance of the F function using 
artificial data, where we know what the true cluster looks 
like. Five scenarios containing different true clusters were 
created: a small circular cluster, a large circular cluster, 
two small circular clusters, an irregular L-shaped cluster 
and an elliptic cluster.

All five different scenarios were built over a map which 
consists of 203 hexagonal cells arranged in a regular 
grid, each of them with a population of 1000 individu-
als. For each scenario, C = 20, 300 total cases were then 

randomly distributed over the map so that individuals in 
regions inside the cluster are more likely to become cases 
than in regions outside the cluster. The relative risk inside 
each cluster was computed so that the power of detection 
would be 0.99 if we knew the exact location of the cluster 
in advance, using a significance level of 0.05 [49].

For each true cluster model, N = 100 random data sets 
are generated under the alternative hypothesis with an excess 
relative risk in the true cluster. The relative risk for regions 
inside each artificial true cluster are computed so that the 
random distribution of cases will produce a significant clus-
ter formed by those regions with probability 0.99 for high 
intensity clusters. For each random data set, we found the 
most likely cluster using the circular spatial scan statistic and 
we computed the F function using M = 100 bootstrap sam-
ples. We then compare the average detected cluster and the 
average F function obtained for the N random data set.

The results for the five different cluster models are 
shown in Figs. 1, 2, 3, 4 and 5. From these graphs we can 
see that the average results obtained through the F func-
tion do not markedly differ from the average most likely 
clusters. As one would expect, the F function is sometimes 
positive for some locations outside the true cluster, but the 
average F values tend to be lower even if close to the true 
cluster, and zero or very close to zero for locations further 
away from the cluster. Moreover, most locations within the 
cluster tend to have a fairly high F value, although never 
exactly equal to the maximum value F = 1 . The exceptions 
are the top of the L-shaped clusters and the top and bot-
tom of the elliptic cluster, where there are a few locations 
within the true cluster that have fairly low F values. The 
worst performance for the L-shaped cluster is showed in 
Fig.  4. This has less to do with the nature of the F func-
tion, but is driven by the fact that a circular scan statistic 
was used to detect a very non-circular cluster. We can see 
that the average detected cluster often fails to detect the 
extreme edges of the L-shaped cluster.

Ideally, a “perfect” method should result in a value 
equal to 1 for locations belonging to the true cluster and 
zero for locations outside of it. For comparison purposes, 
consider t(i) = 1 if the i-th location belongs to the true 
cluster, and t(i) = 0 otherwise. Let Fn(i) be the value of 
F for the i-th location for the n-th random data set, and 
let MLCn(i) = 1 if the i-th location belongs to the most 
likely cluster for the n-th random data set, and equal to 
zero otherwise. Then, we can calculate the Euclidean dis-
tance between the true cluster given by t and its estimates 
given by the Fn function and the most likely cluster MLCn 
for the n-th data set, respectively, by

d(Fn, t) =

√

√

√

√

K
∑

i=1

(Fn(i)− t(i))2)
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and

Table  1 lists the values of the average Euclidean dis-
tances d(Fn, t) =

∑N
n=1 d(Fn, t)/N  and d(MLCn, t) =

∑

N

n=1 d(MLCn, t)/N  for the N = 100 random data sets. 
From Table 1 it is clear that the F function is systemati-
cally closer to the true cluster than the most likely cluster.

d(MLCn, t) =

√

√

√

√

K
∑

i=1

(

MLCn(i)− t(i))2
)

.

Example: chagas disease in newborns in Minas 
Gerais
To illustrate with real data, the new boundary analysis 
method was applied to Chagas disease cases in new-born 
babies in the state of Minas Gerais, Brazil. Chagas disease 
is a parasitic disease caused by Trypanosoma cruzi. The 
vertical mode of transmission, from mother to child, is 
considered one of the main routes of transmission of the 
disease. In Brazil, more than 3 million people are affected 

Fig. 1 A small circular cluster (left), the average detected cluster (center) and the average F function (right)

Fig. 2 A large circular cluster (left), the average detected cluster (center) and the average F function (right)

Fig. 3 Two clusters (left), the average detected clusters (center) and the average F function (right)



Page 7 of 10Oliveira et al. Int J Health Geogr  (2018) 17:5 

by Chagas disease, and more than 600,000 of these reside 
in the state of Minas Gerais.

The population at risk consists of all children born in 
Minas Gerais, from July to September 2006. The new-
born children were blood tested to detect the presence 
of the Chagas disease antigen, with coverage above 96%. 
The tests were conducted through the Minas Gerais State 
Program for New-Born Screening (PETN-MG), coor-
dinated by the NUPAD-MEDICINA/UFMG research 
group from the Federal University of Minas Gerais Medi-
cal School, in collaboration with the Minas Gerais State 

Health Secretary. The data was previously analyzed by 
Oliveira et al. [42].

The state is divided into 853 municipalities with a total 
population at risk of 63,519 new-born babies. A compre-
hensive screening to eliminate false positives was done. 
The data set consists of a pair of coordinates (x,  y), the 
number of cases and the population at risk for each of the 
853 municipalities. To analyze the data, we used the Pois-
son based spatial scan statistic with a circular scanning 
window. The maximum cluster size allowed was 50% of 
total population. Only one statistically significant cluster 
was found. Located in the northern part of the state, it 
had 528 Chagas disease cases among new-borns, a rela-
tive risk of 5.09, with p < 10−17. In Fig. 6, the rate of Cha-
gas disease in each municipality is shown on the top left 
side while the detected cluster is shown on the top right.

The result of the F function boundary analysis is shown 
in Fig. 6. The area formed by the highest F values coin-
cides well with the primary cluster found by the circular 
scan statistics showing a presence of a strong anomaly. 
It is only the southern parts of the detected cluster that 
have somewhat lower F values, indicating some uncer-
tainty as to whether this southern part belongs to the 

Fig. 4 One irregular L-shaped cluster (left), the average detected cluster (center) and the average F function (right)

Fig. 5 A true elliptic cluster (left), the average detected cluster (center) and the average F function (right)

Table 1 Average distances from  the true cluster to  the F 
function and to the most likely cluster

Scenario d(Fn, t) d(MLCn, t)

Small 1.77 1.91

Large 2.72 3.08

Double 2.81 3.49

Irregular 4.61 5.83

Elliptic 3.09 3.64
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true cluster. Regarding the areas outside the detected 
cluster, the locations to the west have low but not insig-
nificant low F values. Hence, there is some weak evidence 
that these areas to the west may belong to the true clus-
ter. In general, this example shows that it was possible to 
evaluate and visualize the uncertainty of the borders of 
the detected cluster by means of the F function boundary 
analysis.

The result of applying the intensity function on the 
same Chagas disease data is shown in the bottom right 
part (d) of Fig.  6. We observe that the potential cluster 
area is less geographically focused with a much wider 
spread than for the F function. As special note is that 
all of the location of the detected cluster has a very high 
intensity, at or close to one. This means that the inten-
sity function has a hard time to determine which areas 
within the detected cluster may not truly belong to the 
true cluster.

Discussion
The spatial scan statistic is a commonly used method for 
detecting and evaluating the statistical significance of 
spatial disease clusters, but there is always uncertainty 
in the actual borders of the true underlying cluster. We 
have proposed the boundary analysis F function as a tool 
to evaluate what areas are more or less likely to belong to 
the true underlying cluster.

Intuitively, one can think of the F function as giving a 
cluster intensity function on the study region of inter-
est, assigning to each area a normalized intensity value 
in [0, 1] range. The higher the intensity given to an area, 
the higher the plausibility of that particular area to belong 
to the true cluster in case it exists. Through the boot-
strap procedure, instead of obtaining a single point esti-
mate of the cluster we were able to obtain a collection of 
“measures” that approximate the true cluster in a more 
stable way, on average. While the estimation based only 

Fig. 6 Chagas disease rates in newborn babies (a), the most likely cluster detected by the circular spatial scan statistic (b), boundary analysis 
obtained by the F function (c) and intensity function (d)
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on the observed data can detect a cluster slightly differ-
ent from the true one by chance, the average of the esti-
mates obtained via bootstrap should assign high values of 
the F function to regions that belong to the true cluster, 
and smaller for regions that do not belong to it, since that 
specific error is unlikely to be repeated over most repli-
cations. Besides, even though the shapes of the scan win-
dow and the true cluster mismatch, since we measure the 
cluster several times by means of the bootstrap approach, 
the final composition would still be able to approximately 
reproduce the actual cluster, on average. In this manner, 
the F function provides information from which the pub-
lic health practitioner can perform a border analysis of 
the detected spatial scan statistic clusters. For instance, 
in a cluster investigation, a public health professional may 
wish to expand outside the detected cluster area to exam-
ine additional observed cases, and the F function can then 
help decide in what directions to expand the investigation.

In this paper, we have implemented and illustrated the 
border analysis F function in the context of the circu-
lar spatial scan statistic for spatially aggregated Poisson 
data. The definition is clearly independent of both the 
shape of the scanning window and the probability model 
under which the data is generated. Hence, it could easily 
be adapted and applied to the elliptic or irregular shaped 
spatial scan statistics, or, scan statistics for Bernoulli, 
multinomial, normal, exponential data. Of course, how 
it will perform in practice for such data needs further 
investigation. It is also unclear how the F function will 
perform for less aggregated data, where there is at most 
one disease case in the majority of the locations. Lastly, 
it would be very interesting to develop a modified F func-
tion for use with space-time scan statistics.

The F function, as described in this paper, is computer 
intensive, as it requires the generation of multiple ran-
dom data sets. To compute the F function we need to 
apply the scan statistic on each of the M = 999 randomly 
generated data sets. Thus, the computational effort is 
exactly the same needed to perform the M = 999 Monte 
Carlo simulations under the null hypothesis to com-
pute the significance of clusters detected in the stand-
ard approach. To make the new method widely available 
to users, it has been implemented in the freely available 
SaTScanTM software www.satscan.org.
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