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METHODOLOGY

A generic method for improving 
the spatial interoperability of medical 
and ecological databases
A. Ghenassia1,3* , J. B. Beuscart1, G. Ficheur1,3, F. Occelli2, E. Babykina1, E. Chazard1,3 and M. Genin1

Abstract 

Background: The availability of big data in healthcare and the intensive development of data reuse and georefer-
encing have opened up perspectives for health spatial analysis. However, fine-scale spatial studies of ecological and 
medical databases are limited by the change of support problem and thus a lack of spatial unit interoperability. The 
use of spatial disaggregation methods to solve this problem introduces errors into the spatial estimations. Here, we 
present a generic, two-step method for merging medical and ecological databases that avoids the use of spatial 
disaggregation methods, while maximizing the spatial resolution.

Methods: Firstly, a mapping table is created after one or more transition matrices have been defined. The latter link 
the spatial units of the original databases to the spatial units of the final database. Secondly, the mapping table is 
validated by (1) comparing the covariates contained in the two original databases, and (2) checking the spatial validity 
with a spatial continuity criterion and a spatial resolution index.

Results: We used our novel method to merge a medical database (the French national diagnosis-related group 
database, containing 5644 spatial units) with an ecological database (produced by the French National Institute of 
Statistics and Economic Studies, and containing with 36,594 spatial units). The mapping table yielded 5632 final 
spatial units. The mapping table’s validity was evaluated by comparing the number of births in the medical database 
and the ecological databases in each final spatial unit. The median [interquartile range] relative difference was 2.3% [0; 
5.7]. The spatial continuity criterion was low (2.4%), and the spatial resolution index was greater than for most French 
administrative areas.

Conclusions: Our innovative approach improves interoperability between medical and ecological databases and 
facilitates fine-scale spatial analyses. We have shown that disaggregation models and large aggregation techniques 
are not necessarily the best ways to tackle the change of support problem.
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Background
In the field of epidemiology, the term “spatial analysis” 
refers to the description and analysis of the spatial distri-
bution of healthcare phenomena, such as the incidence 
or prevalence of disease or healthcare consumption 
across geographic areas [1–5]. Although spatial analy-
sis can be applied to point data, geostatistical data and 

aggregated data, most of the data for spatial analysis in 
the field of health are aggregated because they ensure 
that the patients’ data remain confidential. By defini-
tion, these so-called ecological studies use data that have 
been aggregated into administrative spatial units, such 
as counties, provinces and states. These analyses require 
two categories of aggregated data. The first category 
is related to how the events (e.g. the cases of disease or 
surgical acts) are counted within each spatial unit in the 
study area. The second category is related to the descrip-
tive ecological data on the source population and the 
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living environment within these spatial units, such as the 
socio-economic level, the employment rate, housing con-
ditions and environmental quality. For example, a spatial 
analysis of the incidence of Crohn’s disease in northern 
France examined correlations between two data sources: 
all new cases of Crohn’s disease recorded in the EPIMAD 
register for each district (canton), and the characteristics 
of each of these districts in terms of the underlying pop-
ulation and the living environment. By combining these 
two sources, the investigators were able to (1) calculate 
the incidence of Crohn’s disease for each canton, and (2) 
evaluate the influence of the living environment and the 
population’s socio-economic level [6, 7].

Spatial analysis in healthcare is attracting growing 
interest because of improvements in statistical analysis, 
the development of information technology tools, and 
the emergence of disease registries [8–14]. More recently, 
the availability of big data in healthcare [15–17] and the 
intensive development of data reuse [18, 19] and geo-
referencing [20, 21] have opened up new perspectives 
for describing healthcare consumption or disease preva-
lence/incidence over large geographical areas—even 
whole countries—and analyzing their ecological determi-
nants (such as socio-economic factors) [22, 23].

However, the correlation of big data and ecological 
data over large areas is complicated by the problem of 
database interoperability [24–26]. In the specific setting 
of spatial analysis, interoperability is based on the small-
est possible spatial reference unit, which acts as a link 
between the medical database and the ecological data-
base. In the absence of this link, the data must be aggre-
gated on a larger scale, which limits the precision of the 
results [27–29]. In fact, the quality and relevance of the 
conclusions of a spatial analysis depend on the concord-
ance between the spatial resolution and the nature of the 
phenomenon studied. The use of aggregated data induces 
an ecological bias that fades (but does not disappear) 
when the spatial resolution is increased [30]. Moreover, a 
finer-scale analysis enables the assessment of more local 
phenomena, such as the impact of sources of pollution 
[31]. However, larger spatial units may be more appropri-
ate if the underlying disease pathways involve larger-scale 
phenomena. The availability of fine-scale data provides 
an opportunity to use the scale that best matches the 
study’s goal.

Poor interoperability between medical databases and 
ecological databases thus appears to be a major limitation 
for fine-scale spatial analyses of large geographical areas. 
However, the interoperability problem should not limit 
the choice of the most appropriate scale. This interoper-
ability problem has been highlighted (for example) for 
National Health Service data in the UK, Statewide Plan-
ning and Research Cooperative System data from New 

York State in the USA, and the French national diagnosis-
related group database (Programme Médicalisé des Sys-
tèmes d’Information, PMSI) [27, 32, 33].

Two ways of tackling the interoperability problem have 
been suggested: spatial disaggregation and spatial aggre-
gation. The first approach consists in creating a map-
ping table that adopts the finest scale; consequently, the 
data aggregated on a larger scale are disaggregated into 
spatial units at the finest scale. However, this neces-
sitates the use of complex statistical models for spatial 
disaggregation (such as areal interpolation models) to 
estimate the variables’ values on a smaller scale. Hence, 
these procedures can lead to errors in the spatial estima-
tion, which are especially large because the spatial units 
of origin are considered on very different scales (e.g. by 
going from the state scale to the town scale) [26, 34]. The 
second approach (aggregation methods) consists in cre-
ating a mapping table that links the spatial units of one 
or both databases to a larger scale. In a simple, particular 
case, the data from one of the two databases are aggre-
gated to the spatial scale of the other database. However, 
in the most frequent case, the spatial units of the two 
databases are aggregated into a larger spatial unit that 
covers them both. Although most studies use administra-
tive spatial units as a larger spatial unit, this is not nec-
essarily the finest and/or most appropriate scale for use. 
Consequently, aggregation methods markedly decrease 
spatial resolution (e.g. by going from the town scale to 
the county scale), and may lead to an increase in the eco-
logical bias [27–29].

The primary objective of the present study was to 
develop and characterize a generic method for building 
a mapping table between a medical database and an eco-
logical database while maximizing the spatial resolution 
and avoiding the use of spatial disaggregation techniques 
and thus enabling the choice of most appropriate scale 
for the phenomenon being studied. By way of an illustra-
tive example, we applied this method to the interoper-
ability of the above-mentioned PMSI medical database 
and the socio-economic data produced by the French 
National Institute of Statistics and Economic Studies 
(Institut National de la Statistique et des Études Économ-
iques, INSEE).

The generic method
This section describes the generic method for improv-
ing the spatial interoperability of medical and ecological 
databases. The different steps in this generic method are 
summarized in Fig. 1.

Data and objectives
Let us consider two distinct databases: a medical data-
base that describes patients and healthcare events, and 
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an ecological database that describes the population. The 
present method considers the following conditions of 
application:

1. The medical database is organized on the scale of the 
individual. Each individual is attached to a spatial ID 
Spatial_Id_Medical, which corresponds to the spa-
tial unit SU_medical. A variable characterizes each 
healthcare event.

2. The ecological database is organized on the scale of 
the spatial unit SU_eco, which has a unique spatial ID 
Spatial_Id_Eco.

3. The spatial units SU_medical and SU_eco differ, as do 
the spatial IDs Spatial_Id_Eco and Spatial_Id_Medi-
cal.

The objective of our method is to build a mapping 
table that enables the creation of a final database com-
prising both medical and ecological data from the 
above-mentioned databases on the scale of the spatial 
unit SU_analysis and with a unique spatial ID called 

Spatial_Id_Analysis. The medical database must be 
aggregated for the variable characterizing the health-
care event on the scale of the spatial unit SU_medi-
cal (Fig. 2). An example showing how the final spatial 
analysis database is built is provided in the Additional 
file 1.

Construction rules 
1. The direction of the relationship. When spatial units 

differ in size (i.e. SU_medical  ≠  SU_eco), the two 
databases can only be aligned after the data have 
been aggregated. Count data are aggregated by cal-
culating a sum, whereas continuous variables or pro-
portions can be aggregated by calculating a median, 
mean or weighted mean. The larger of the two spa-
tial units is then chosen as SU_analysis. The reverse 
process requires the use of a disaggregation method, 
leading to a loss of precision [34, 35].

2. Transition matrices M1…Mp. A transition matrix is a 
tool for linking an original spatial ID to a final spatial 
ID:

Identification of the 
medical database 

Identification of the 
ecological database 

Different Spatial_Id in 
the two databases

Description of the 
Spatial_Id_medical
and Spatial_Id_Eco

Identification of the 
largest original spatial 

unit

Analysis spatial unit 
based on largest 

original spatial unit

Description and 
analysis of transition 

matrices

Mapping table 
construction

Mapping table 
validation with 

common variables

Spatial validation: 
background map 

analysis

Spatial validation: 
fragmentation index

Spatial validation: 
resolution index

Data sources Construction rules Validation

Fig. 1 A standardized approach for maximizing the interoperability of ecological and medical databases for spatial analysis
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Validation
Validation of the mapping table
After the final database has been built, it is necessary to 
validate the quality of the interface between the medical 

Spatial_Id_Analyse Number of events Number of inhabitants Var 2 Var 3 

Spatial_Id_Eco Spatial_Id_Medical Spatial_Id_Analyse

Spatial_Id_Eco Number of 
inhabitants Var 2  Var 3 

ID patient Spatial_Id_Medical Events* 

Ecological database Medical database

Mapping table 

Spatial analysis final database

Spatial_Id_Medical Number of events

Aggregation

Fig. 2 A generic method for building a final database for spatial analysis. Asterisk a variable characterizing the healthcare event studied (e.g. cases 
of disease, length of hospital stay, surgical acts, etc.)

1*Spatial_Idj 1*Spatial_Idj+1

n*Spatial_Idj 1*Spatial_Id j+1

1*Spatial_Idj n*Spatial_Id j+1

n*Spatial_Idj, n*Spatial_Id j+1

Mk

Mk

Mk

Mk

Fig. 3 Mutually exclusive equivalence situations for a transition 
matrix  Mk.  Mk is a transition matrix from among  M1…Mp transition 
matrices.  Mk describes the relationship between a Spatial_Idj and 
a Spatial_Idj+1 and therefore links them. n > 1, corresponds to the 
number of spatial IDs

M1 Mk Mp
Spatial_Id1 … Spatial_Idj Spatial_Idj+1 … Spatial_Idp+1

= =

Spatial_Id_Eco Spatial_Id_Temp Spatial_Id_Medical

A mapping table for the IDs Spatial_Id_Medical and 
Spatial_Id_Eco IDs can be built by using p transition 
matrices (p ≥ 1). For example, a transition matrix makes 
it possible to associate each town’s spatial ID with the 
spatial ID of the state to which it belongs. However, in 
more complex situations, there may be no direct way of 
linking the two spatial IDs. Thus, two or more matrices 
are required, leading to the creation of at least one tem-
porary spatial ID Spatial_Id_Temp. The mapping table 
yields p + 1 Spatial_Id, where Spatial_Id1 corresponds to 
the Spatial_Id_Eco and Spatial_Idp+1 corresponds to the 
Spatial_Id_Medical. The transition matrices are based on 
a detailed assessment of the Spatial_Id_Medical and Spa-
tial_Id_Eco IDs. It is then necessary to describe all the 
equivalence situations for each transition matrix. One or 
several Spatial_Idj can correspond to one or several Spa-
tial_Idj+1 (1 ≤ j < p + 1). The various, mutually exclusive 
equivalence situations for a given transition matrix  Mk 
(1 ≤ k ≤ p) are shown in Fig. 3.
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database and the ecological database. We used the fol-
lowing approach: (1) identification of the set of variables 
shared by the medical database and the ecological data-
base; (2) choice of the variables that display the best 
exhaustiveness and reliability; and (3) comparison of 
these variables in the two databases on the scale of the 
SU_analysis spatial unit.

Spatial validation
In spatial terms, the final purpose of the mapping table 
is to create a background map on the scale of the SU_
analysis spatial unit. In order to check the quality of 
the selected spatial unit (SU_analysis), it is necessary 
to evaluate spatial continuity and the decline in spatial 
resolution.

Spatial continuity is defined as the ability to move from 
any one point to another point without leaving the spa-
tial unit considered. In other words, a spatially continu-
ous unit has a single boundary [36–38]. A spatial unit that 
does not meet this condition is referred as discontinuous 
or fragmented. Most studies of putative links between a 
health outcome and environmental factors rely on the use 
of aggregated data. These data are frequently represented 
by the centroid of each spatial unit. However, in the case 
of discontinuous spatial units, the centroid may be out-
side the spatial unit. Hence, an error in the data’s spatial 
location (due to fragmented spatial units) might affect the 
findings and result in an erroneous conclusion [36–38]. In 
order to control for this eventuality, spatial continuity is 
evaluated by determining the fragmentation of the spatial 
units, defined as the number of discontinuous SU_analy-
sis as a proportion of the total number of SU_analysis [37, 
38]. This index can be calculated using geographical infor-
mation systems, such as QGIS and ArcGIS [39, 40].

Spatial resolution is defined as the surface area of the 
smallest spatial unit in a given data set; it corresponds 
to the level of detail within the data. Aggregation of spa-
tial units decreases the spatial resolution and thus the 
quality of the analysis. For example, the spatial resolu-
tion decreases if (for a given geographical zone) the data 
for a town are aggregated with data for the region as a 
whole. The decline in spatial resolution can initially be 
evaluated visually. The background map for SU_analysis 
is compared with the background map for the smallest 
spatial unit in the initial databases, in order to identify 
any obviously aberrant aggregates. The decline in spatial 
resolution can then be measured by calculating the ratio 
between the median surface area of SU_analysis and 
that of the smallest spatial unit in the initial databases 
(SU_initial = SU_eco or SU_med). This ratio must also be 
calculated for other administrative reference units whose 
surface area is known. These ratios are then compared: a 

lower index of decline corresponds to a spatial unit with a 
higher spatial resolution.

For example, reference units 1 and 2 could be the county 
and the state for the USA, or the canton and the départe-
ment for France. This index can be also calculated from 
census data on the number of inhabitants.

Application of the generic method: an illustrative 
example based on French databases
Data sources and objectives
In this section, the generic method is applied to a pair of 
French medical and ecological databases.

1. The medical database is the PMSI. Collection of 
these data has been approved by the French National 
Data Protection Commission (Commission Nation-
ale de l’Informatique et des Libertés; authorization 
1754053). The database is compiled and released by 
France’s Technical Agency for Information on Hos-
pitalization (Agence Technique de l’Information sur 
l’Hospitalisation, ATIH). The database contains a 
summary of each inpatient stay in France, including 
the ICD-10 diagnostic code, the medical procedures 
performed (coded according to the French CCAM 
classification) and the patient’s age, gender, and 
unique identifier. Each patient is localized by his/her 
place of residence, which is only characterized by the 
PMSI spatial ID (Spatial_Id_PMSI) in the spatial unit 
SU_PMSI. There were 5644 distinct SU_PMSIs in 
France in 2014, which were characterized by a mean 
surface area of 97.37 km2 and a mean population of 
11,174.

2. The ecological database was produced by the INSEE 
[41]. The INSEE acts as France’s census office, and 
collects a vast range of demographic, social, eco-
nomic and housing-related data. Most of the data 
are publicly available on the INSEE website. The data 
are summarized for various spatial units: the com-
mune, the canton, the département and the région (in 
increasing hierarchical order; see Additional File 2 for 
details). Most frequently, the data are summarized 
on the scale of the commune (SU_INSEE), which is 
characterized by the spatial ID Spatial_Id_INSEE. In 
2014, there were 36,594 communes (SU_INSEE) in 
France.

3. The spatial units SU_PMSI and SU_INSEE differ, as 
do the IDs Spatial_Id_PMSI and Spatial_Id_INSEE.

SU_analysis

SU_initial
versus

SU_reference1

SU_initial

versus
SU_reference2

SU_initial
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The goal of our method is to create a mapping table for 
the IDs Spatial_Id_PMSI and Spatial_Id_INSEE, in order 
to build a final database that includes both medical data 
from the PMSI and ecological data from the INSEE. The 
PMSI medical database provides information on each 
hospital stay for each patient, which are aggregated for 
each Spatial_Id_PMSI spatial unit. In this illustrative 
example, the healthcare event of interest is an in-hospital 
birth. This event was detected by screening for (1) hospi-
tal admissions from home, (2) a patient age of 7 days or 
less, (3) admissions from another hospital with a body-
weight below 2500  g, and (iv) admissions from another 
hospital, with a patient age below 30 days.

Construction rules
The direction of the relationship
The median [interquartile range (IQR)] surface area is 
larger for SU_PMSI (70  km2 [21.6–147.6] than for SU_
INSEE (10.8 km2 [6.4–18.4]. Accordingly, the spatial unit 
for the analysis (SU_analysis) must be based on the spa-
tial unit SU_PMSI, which is characterized by the spatial 
ID Spatial_Id_PMSI.

Transition matrices  M1,  M2
Two transition matrices were required to establish a cor-
relation between Spatial_Id_INSEE and Spatial_Id_PMSI 
via the Zip_code:

The various equivalence situations for each transition 
matrix are presented in the Additional file 3. Transition 
matrix M1 is obtained by correlating Spatial_Id_INSEE 
(the ID for the communes) and the Zip_code for the 
commune [42]. In France, a zip code corresponds to the 
geographical zone covered by a single postal delivery 
office. The equivalence situations are described in detail 
in Table 1. In over 95% of cases, a given zip code covers 
several communes, which leads to the first data aggrega-
tion step (Table 1: situations 1, 4 and 5). In large, highly 
populated communes (< 1%), many zip codes correspond 
to a single commune. Each zip code corresponds to a sin-
gle subset of the commune, and the union of these dis-
tinct subsets constitutes a commune (situation 2). In 5% 
of cases, the zip code corresponds to the commune’s Spa-
tial_Id_INSEE (situation 3).

Transition matrix M2 is obtained by correlating Spa-
tial_Id_PMSI and Zip_code. According to the ATIH, 
Spatial_Id_PMSI has to be built from zip codes for legal 
reasons [43]. Thus, Spatial_Id_PMSI is equivalent to the 
zip code’s geographic area when the level of statistical 
confidentiality is high enough (in over 99% of cases; situ-
ations 1, 3 and 5). In the opposite case, Spatial_Id_PMSI 
corresponds to the aggregation of several zip codes (< 1% 
of cases: situations 2 and 4). A second aggregation step is 
then performed. In situation 2, the transition matrix M1 
connects the commune to several zip codes. However, 

Table 1 Mapping table for Spatial_Id_INSEE and Spatial_Id_PMSI
Situations Mapping table Proportion (%)

Spatial_Id_Eco M1 Spatial_Id_Temp M2 Spatial_Id_Medical Spatial_Id_Analysis Spatial_Id_INSEE
(n = 36,594)

Number of inhabitants
(n = 63,375,971)

1
Spatial_Id_INSEE

Zip_code Spatial_Id_PMSI Spatial_Id_Analysis 94.5 (n = 34,602) 56 (n = 35,260,461)Spatial_Id_INSEE
Spatial_Id_INSEE

2 Spatial_Id_INSEE
Zip_code

Spatial_Id_PMSI Spatial_Id_Analysis < 1 (n = 48) 9 (n = 5,707,929)Zip_code
Zip_code

3 Spatial_Id_INSEE Zip_code Spatial_Id_PMSI Spatial_Id_Analysis 4.7 (n = 1719) 35 (n = 22,016,678)

4

Spatial_Id_INSEE Zip_code
Spatial_Id_PMSI Spatial_Id_Analysis < 1 (n = 208) < 1 (n = 98,684)Spatial_Id_INSEE

Spatial_Id_INSEE Zip_codeSpatial_Id_INSEE

5

Spatial_Id_INSEE Zip_code Spatial_Id_PMSI

Spatial_Id_Analysis < 1 (n = 14) < 1 (n = 292,219)Spatial_Id_INSEE Zip_code Spatial_Id_PMSI
Spatial_Id_INSEE Zip_code Spatial_Id_PMSISpatial_Id_INSEE

M1 M2

Spatial_Id_INSEE Zip_code Spatial_Id_PMSI
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data partition is not necessary because the transition 
matrix M2 aggregates exactly the same units.

Lastly, a Spatial_Id_analysis ID is attributed to each of 
the Spatial_Id_PMSI (situations 1 to 4). The combina-
tion of transition matrix M1 and transition matrix M2 
can, however, generate a small number of particular cases 
(<  1% of cases). In  situation 5, several Spatial_Id_PMSI 
IDs have at least one Spatial_Id_INSEE ID in common. It 
is then impossible to obtain an exact correlation between 
the spatial ID from the PMSI and the spatial ID from the 
INSEE. In this situation, the Spatial_Id_PMSI IDs are 
aggregated into a single Spatial_Id_Analysis ID. Thus, 23 
Spatial_Id_PMSI IDs were grouped into 11 Spatial_Id_
Analysis IDs. In total, there were 5632 Spatial_Id_Analy-
sis IDs in the final database.

The data processing and statistical analyses were per-
formed using R software (version 3.3.2) [44]. QGIS soft-
ware (version 2.14) was used to create the background 
map and calculate the fragmentation index [39].

Validation
Validation of the mapping table
In order to evaluate the quality of the match between the 
PMSI database and the INSEE database, the annual num-
ber of live births was used as the common variable.

The number of births associated with each Spatial_
Id_INSEE ID was provided by the INSEE. The number 
of births associated with each Spatial_Id_PMSI ID was 
obtained by extracting the PMSI database.

For each Spatial_Id_Analysis ID, the indicators were 
compared by calculating the relative difference (i.e. the 
difference between the number of births in the INSEE 
data and the number of births in the PMSI data, divided 
by the number of births in the PMSI data). These rela-
tive differences are quoted as the median [IQR]. The total 
number of births was 785,742 in the INSEE database 
and 737,545 in the PMSI database, giving a difference of 
48,197. The median [IQR] relative difference was 2.3% 
[0–5.7] (a boxplot is available in the Additional file 4).

In 2012, the ATIH performed an extensive study of 
the number of inhabitants in each SU_PMSI spatial unit, 
based on the INSEE data. The data on the number of 
inhabitants are available online for each Spatial_Id_PMSI 
[45]. We therefore transformed these data on the scale 
of the Spatial_Id_Analysis and compared the population 
data provided by the ATIH and the population data pro-
vided for SU_INSEE, as aggregated by our mapping table. 
For each of the Spatial_Id_Analysis IDs, the correlation 
was perfect (difference =  0). Hence, the resulting map-
ping table automatically performs the task described by 
the ATIH, regardless of the INSEE variable.

Spatial validation
A background map of the SU_analysis spatial unit was 
created using data from the French National Geo-
graphic Institute (Institut National de l’Information 
Géographique et Forestière, IGN) (Fig. 4). Spatial continu-
ity was evaluated by calculating the fragmentation index; 

Fig. 4 Background map for the SU_INSEE (a) and SU_analysis (b) in mainland France in 2014. a Background map of the spatial unit SU_INSEE, which 
represents the French communes in 2014. b Background map of the spatial unit SU_analysis, which represents the analysis spatial unit for our appli-
cation in 2014
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this was 2.4% (n = 134) for the 5632 SU_analysis spatial 
units. This value is within the range of fragmentation 
indices (2–40%) reported for public use microdata areas 
(PUMAs) in the USA [37].

A possible decline in the spatial resolution was evalu-
ated first by visual comparison of the respective back-
ground maps for SU_INSEE and SU_analysis (Fig. 4). The 
SU_analysis spatial unit appeared to be regularly distrib-
uted over the geographical zone, with no aberrant aggre-
gations. In a second step, we calculated the decline index 
for the spatial resolution required to obtain data on the 
surface area and the number of inhabitants in the French 
communes, cantons and départements. The surface area 
data came from the IGN, whereas the data on the num-
ber of inhabitants came from the INSEE database. The 
comparison of the spatial resolution index for SU_anal-
ysis with the French administrative units is described in 
Table 2. The SU_analysis unit has a lower decline index 
than the cantons and départements for the surface area 
(6.5, 13.6 and 555.3, respectively) and the number of 
inhabitants (14.6, 24 and 1249.2, respectively).

On average, the spatial unit for analysis is therefore 6 
times larger than the smallest available unit, testifying to 
a loss of spatial resolution. However, our method mini-
mizes this loss; for the surface area, the scale is twice as 
fine as the first reference unit (the canton) and nearly 100 
times finer than for the département (the second refer-
ence unit).

As an illustrative example of the application of this 
method, the birth rate was mapped (Additional file 5).

Discussion
The method presented here addresses the interoper-
ability problem for ecological and medical databases in a 
context of the spatial analysis of healthcare events. The 
loss of spatial resolution was minimized, and we did not 

have to resort to the use of spatial disaggregation tech-
niques. The method’s application to French national 
data enabled us to correlate medical data from the PMSI 
database with ecological data from the INSEE database—
resulting in the creation of a final database for fine-scale 
spatial analysis.

This method may be of value for correlating ecological 
and medical big data in spatial analyses. This type of data 
is increasingly available and is opening up new perspec-
tives in epidemiology. However, the use of medical big 
data in the field of spatial analysis is restrained by inter-
operability problems, known as the change-of-support 
problem and the misaligned data problem [26]. In Ross-
heim et al.’s study of alcohol sales and the socio-economic 
environment, the data were available on the scale of the 
zip code, the census block or the zip code tabulation area. 
To perform analyses on the zip code scale, the research-
ers were obliged to use spatial disaggregation and aggre-
gation methods; this decreased the quality of the final 
spatial analysis database [46]. A similar problem was 
encountered in Sundmacher and Busse’s study of the link 
between physician supply and avoidable cancer deaths 
in Germany. The lack of interoperability and the broad 
range of ecological databases prompted the researchers 
to use spatial interpolation methods on the district level 
and to not integrate certain environmental data—thus 
placing limitations on their analyses [47].

Spatial resolution is a major issue in the spatial analy-
sis of healthcare data because it is easier to detect local 
phenomena when the resolution is high [30]. For exam-
ple, the decrease in spatial resolution affects the precision 
with which a cluster can be localized [8, 48]. The varia-
tion in the results of a spatial analysis as a function of the 
spatial resolution was emphasized by Lee et al.’s study of 
obesity in the USA; fewer healthcare events were identi-
fied when the spatial resolution fell [49]. Jeffery et al. [50] 

Table 2 Comparison of the numbers of inhabitants and surface areas

Comparison of the numbers of inhabitants and surface areas for French administrative spatial units and the SU_analysis spatial unit, via calculation of the decline 
index for spatial resolution (2014 data)
a Surface area (in square kilometres)
b Number of inhabitants (in thousands)
c Ratio between the median for the spatial unit and the median for the commune
d Interquartile range

N Surface  areaa Number of  inhabitantsb

Indexc Median IQRd Indexc Median IQRd

SU_reference

 Communes 36,594 1 10.8 6.4–18.4 1 0.4 0.2–1.1

 Cantons 3708 13.6 146.2 66–209.6 24 10.4 5.5–20.4

 Départements 96 555.3 5986 5153–6811 1249.2 540.9 306.5–855.8

SU_analysis 5632 6.5 70 21.6–147.6 14.6 6.3 3.5–11.8
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came to a similar conclusion in their study of paediatric 
leukemia.

The advantage of our method consists in opting for 
aggregation on the finest scale possible, whilst check-
ing the quality of the final spatial analysis database. This 
approach appears to have been used previously in a study 
of stroke, although the method’s details were not speci-
fied [23]. The use of spatial disaggregation methods is not 
desirable, since they lead to a loss of precision in spatial 
analysis—even when complex models are used [26, 34]. 
Furthermore, validation of the mapping table results in a 
high-quality final database for spatial analysis. The spa-
tial validation process ensures that the greatest possible 
spatial resolution is achieved. Lastly, validation ensured 
that the spatial units’ fragmentation index remains 
low. By way of an example, Siordia et  al.’s studies of the 
American PUMA database featured a high fragmenta-
tion index and thus encountered theoretical difficulties in 
the application of statistical models; the spatial position 
of a healthcare event was no longer coherent with that of 
a spatial unit [37, 38]. This generic method may provide 
a structural framework so that researchers can provide a 
standardized description of the methods used to aggre-
gate ecological and medical spatial data.

Nevertheless, our present method has a number of 
limitations, most of which are inherent to all spatial analy-
ses. Firstly, a large percentage of the scenario 5 (Table 1) 
might decrease the spatial resolution, due to the aggre-
gation of several basic spatial units. This issue can be 
evaluated by analyzing the spatial resolution index (as 
presented in the present study) and establishing whether 
the final spatial unit sizes are homogeneously distributed 
or not. Secondly, the geographical boundaries of spatial 
units change over time, which can make it more difficult 
to study healthcare events over a long time interval. This 
problem can be tackled in two ways: by optimizing the 
study period and thus minimizing changes in geographi-
cal boundaries or by considering the geographic bounda-
ries that correspond to the longest study period. Thirdly, 
our method only partly addressed the change-of-support 
problem because it only applies to aggregated data (a fre-
quent situation in the spatial analysis of healthcare events, 
nevertheless) [51]. Therefore, for other types of spatial 
data (such as geostatistical data), preliminary work on 
aggregation to the spatial unit of interest must be carried 
out in collaboration with specialists in the particular field. 
Lastly, the present method requires the definition of tran-
sition matrices prior to construction of the mapping table.

Conclusion
In conclusion, the present work suggests that it is pos-
sible to significantly improve the interoperability of eco-
logical databases and medical databases, and thus enable 

finer-scale analyses. In view of the growing availability 
of big data, the method presented here could be a useful 
tool for the precise spatial analysis of large geographical 
areas.
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