
BioMed Central

International Journal of Health 
Geographics

ss
Open AcceResearch
Geographical and seasonal correlation of multiple sclerosis 
to sporadic schizophrenia
Markus Fritzsche*

Address: Clinic for Internal Medicine, Soodstrasse 13, 8134 Adliswil, Switzerland

Email: Markus Fritzsche* - markus.fritzsche@bluewin.ch

* Corresponding author    

Abstract
Background: Clusters by season and locality reveal a striking epidemiological overlap between
sporadic schizophrenia and multiple sclerosis (MS). As the birth excesses of those individuals who
later in life develop schizophrenia mirror the seasonal distribution of Ixodid ticks, a meta analysis
has been performed between all neuropsychiatric birth excesses including MS and the epidemiology
of spirochaetal infectious diseases.

Results: The prevalence of MS and schizophrenic birth excesses entirely spares the tropical belt
where human treponematoses are endemic, whereas in more temperate climates infection rates
of Borrelia garinii in ticks collected from seabirds match the global geographic distribution of MS. If
the seasonal fluctuations of Lyme borreliosis in Europe are taken into account, the birth excesses
of MS and those of schizophrenia are nine months apart, reflecting the activity of Ixodes ricinus at
the time of embryonic implantation and birth. In America, this nine months' shift between MS and
schizophrenic births is also reflected by the periodicity of Borrelia burgdorferi transmitting Ixodes
pacificus ticks along the West Coast and the periodicity of Ixodes scapularis along the East Coast.
With respect to Ixodid tick activity, amongst the neuropsychiatric birth excesses only amyotrophic
lateral sclerosis (ALS) shows a similar seasonal trend.

Conclusion: It cannot be excluded at present that maternal infection by Borrelia burgdorferi poses
a risk to the unborn. The seasonal and geographical overlap between schizophrenia, MS and
neuroborreliosis rather emphasises a causal relation that derives from exposure to a flagellar
virulence factor at conception and delivery. It is hoped that the pathogenic correlation of
spirochaetal virulence to temperature and heat shock proteins (HSP) might encourage a new
direction of research in molecular epidemiology.

Background
Schizophrenia and multiple sclerosis are distinct neu-
ropsychiatric disorders of the central nervous system
(CNS). Schizophrenia is characterised by disturbances in
multiple domains of brain functioning, few in vivo or post-
mortem studies of which find evidence for a particular
structural alteration [1]. MS typically manifests as acute
focal inflammatory demyelination and axonal loss in-

volving the immune system and culminating in the
chronic multifocal sclerotic plaques from which the dis-
ease gets its name [2–4]. MS and schizophrenia, nonethe-
less, exhibit a striking epidemiological overlap [5].
Prevailing in the colder parts of the world and affecting
mainly young adults in their most productive years, both
run an irregular, chronic course. Apart from acute infec-
tions [6], no other disease exhibits an equally marked ep-
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idemiological cluster by season and locality, nurturing the
hope that solutions might ultimately be attainable [5].

Geographical correlations between MS and schizophrenia
prevalence rates (PRs) have been reported worldwide
[5,7–9]. In the north of the USA, the states with the high-
est rates of schizophrenia score significantly higher rates
of MS than the states with the lowest schizophrenia rates
in the south [9]. Findings that immigrants from tropical
low-risk areas are more likely to contract schizophrenia or
MS than those who stay behind have been widely replicat-
ed and are now considered strong epidemiological risk
factors (for review see [10–12]). Migration away from the
hot spots reduces the probability of developing MS if the
move takes place before adolescence. Regardless of the di-
rection of the move, however, MS death rates for migrants
born in one risk area and dying in another are intermedi-
ate between those of their birthplace and their final resi-
dence. These biological gradients suggest a common
environmental component that could be influenced. If
caused by an infectious agent [12] as presupposed by
Marie in 1884 [13], what kind of transmission or viru-
lence would lie at its root?

The earliest lesion seen in MS is a focal infiltration of lym-
phocytes around small blood vessels in the brain and spi-
nal cord. This implies that inflammatory cells are reacting
against an antigen located in the central nervous system
(CNS) to which they have become sensitised. In MS pa-
tients, the intrathecal synthesis of immunoglobulins, the
appearance of immune complexes and change in the bal-
ance of T cell populations all indicate immune activity in
tissues that are normally quiet (for review see [2,3]). The
responsible antigen could be CNS tissue ('self'), in which
case we are dealing with an autoimmune disease. Alterna-
tively, it could be of microbial ('foreign') origin, or both.
Analogous to streptococcal infection in relation to rheu-
matic fever, the environmental factor in MS may be ac-
commodated by arguing that exposure to an infection
elicits upon re-exposure an abnormal immune response
against a similar antigen in the CNS.

From this epidemiological point of view, we are best ad-
vised to search for positive and negative correlation. For
general immunity acquired against endemic infection is
supposed to increase the resistance against MS in develop-
ing countries [14]. In the interior of New Guinea, in fact,
where neither MS [15] nor schizophrenia [16] nor Lyme
borreliosis [17] appears to be prevalent, the inhabitants
exhibit antibodies possibly induced by endemic
treponemes that cross-react with Borrelia burgdorferi anti-
gens [17].

Since the beginning of the last century it was suggested
that MS and neurosyphilis caused by the spirochaete

Treponema pallidum [18] had similar clinical and histolog-
ical characteristics. Extremely difficult to find, as in tabes
dorsalis [18], neuropathologists documented the pres-
ence of spirochaetal structures in MS plaques suggesting
that the patients were infected with a spirochaete [19,20],
most likely B. burgdorferi [21].

Congenital infection by B. burgdorferi resembles congeni-
tal syphilis as well. Like in humans [22], however, chronic
prenatal infections by B. burgdorferi are rare in mice, and
acute prenatal infection of the unborn is restricted to a
narrow time window of transplacental transmission [23].
Henceforth the birth excess of those individuals who later
in life develop sporadic schizophrenia mirrors the season-
al distribution of Ixodes ticks and Borrelia burgdorferi at the
time of conception [16].

If in analogy to chronic hepatitis B infection at birth [24],
MS were induced [25] or exacerbated [26] by exposure to
B. burgdorferi antigens during delivery, we would expect a
direct seasonal match between MS birth excesses and Ixo-
did tick activity worldwide. Contrasting with the possible
deleterious mutagenic effect of B. burgdorferi at concep-
tion [16], a time difference of nine months is expected be-
tween MS births and the schizophrenic insult to the
implanting embryo. Should general immunity acquired
against treponemes [17] increase resistance against Borre-
lia and MS, we would furthermore expect a positive geo-
graphic correlation of MS to neuroborreliosis as well as a
negative correlation of MS to endemic treponematoses.
Otherwise, the present hypothesis of B. burgdorferi as a
possible major aetiologic factor for both congenital spo-
radic schizophrenia and MS would be falsified.

Methods
The different prevalence rates of MS as recently reviewed
[15] were compared to the global distribution of endemic
treponematoses [27] and to all significant schizophrenic
birth-excess rates [16] worldwide. For statistical reasons,
only publications encompassing more than 3000 cases of
significant schizophrenic birth excesses compared to the
normal population have been considered [28], including
two studies from Denmark and Australia showing both
one significant and one non-significant result each. In a
second step of the investigation, the routes of Borrelia car-
rying migratory birds were considered for the following
reason. The schizophrenic birth excesses are limited to ex-
actly those regions that are endemic for B. burgdorferi
transmitting Ixodes tick vectors [16]. This geographical
overlap, however, is less than perfect with respect to MS,
particularly in southern latitudes, and the use of artificial
country boundaries is of doubtful biological value, unless
they are given by naturally defined geographical areas
[11]. As the rule of MS varying with latitude is violated in
central Europe including Switzerland and its neighbour-
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ing countries, areas of high relative risk were put under
closer scrutiny. MS hot spots in central Europe, in fact,
harbour the few remaining nesting sites of the classical
passerine bird, the white stork (Ciconia ciconia), and mi-
gratory seabirds following the rivers and islands spread Ix-
odes ticks and Borrelia garinii (a subspecies of Borrelia
burgdorferi sensu lato) worldwide [29] (see Figure 1). From
the comprehensive literature, the seasonal periodicity of
Ixodid tick activity was then used in this meta analysis and
plotted against numerical data encompassing all neu-
ropsychiatric birth excesses [30] of the respective macro-
climatic regions including MS (Figure 2).

Results
Geographical correlation of MS and sporadic schizophre-
nia to Ixodes ticks and migratory birds
The geographical gradient of MS (Figure 1), which sharply
declines at the 37° latitude [12,15], entirely spares the
tropical belt where human treponematoses caused by T.
carateum, T. pertenue, and endemic T. pallidum prevail
[27]. This negative correlation between areas of endemic
treponematoses on the one hand and MS as well as schiz-
ophrenic birth excesses on the other is striking. With the
notable exception of Florida, Australia and Tunisia (see
Figure 1), subtropical areas exhibit neither a significant
schizophrenic birth excess nor a prevalence rate (PR) of
MS higher than 5/100'000 [15].

In central Europe, the highest relative risks for MS can be
found along the breeding sites of migratory birds. These
hot spots are located along the north-south axis of the Up-
per Rhine plain and its tributaries, the Bas Rhin, Haut
Rhin, Moselle regions [31], around Basel [32], in the Swa-
bian Alps [33], Sardinia, as well as the Aosta Valley [15],
the only place in Italy where the white stork (Ciconia cico-
nia) still nests (see insert in Figure 1). Tunisia, which is
reached by passerine European birds carrying Ixodes ticks
and B. garinii [34], scores the highest rate of MS in Africa
[15]. Malta, by contrast (see Figure 1), which compared to
Sicily is relatively free of MS [11,15], hosts a number of
endemic lizards, and ticks lose their infectious potential
for humans when feeding on these reptiles. This so-called
zooprophylactic effect also applies to the low-risk areas of
MS and sporadic schizophrenia [9] in the United States,
where south of the 37° latitude infections by B. burgdorferi
are poorly maintained in lizards [35].

Although of low prevalence, MS exists in South East Asia:
in Japan and Taiwan [15,36] down to the Philippines
[12], where the Wallace Line (see Figure 1) limits the
southward spread of B. burgdorferi harbouring Ixodid ticks
into Austronesia [37]. In Irian Jaya (I.J.) and P.N.G. (see
Figure 1), from where neither the presence of Lyme dis-
ease nor MS has been reported, schizophrenia is non-ex-
istent apart from the south-west coast which is

sporadically reached by migratory birds and ticks [16]. In
the southern hemisphere, MS [15]and schizophrenic birth
excesses [38] are, compared to the northern hemisphere,
less significant. From the area of Singapore, which is non-
endemic for Ixodes ticks and B. burgdorferi but endemic for
treponematoses (see Figure 1), a schizophrenic birth ex-
cess is significantly absent. This trend parallels the scarcity
of MS and relatively recent upsurge of schizophrenic birth
excesses in Japan, where B. garinii harbouring ticks have
been sporadically introduced by migratory birds from
North East Asia (for discussion see [16]). Southern Aus-
tralia and New Zealand, by contrast, which can be reached
by polar seabirds carrying Ixodes uriae and B. garinii via the
Antarctic [39], score relatively high rates of schizophrenia
[40] and MS [15].

Geographical correlation of MS to Borrelia burgdorferi 
sensu lato
The infection rates of B. garinii in I. uriae ticks [29] reflect
not only the global distribution of MS, but also its world-
wide gradient. The highest number of spirochaetes detect-
ed by microscopy were collected from seabirds in Iceland,
Alaska and the Faroes (see Figure 1) all areas from where
epidemics as well as very high rates of MS have been pub-
lished [12,41]. Ticks from Sweden yielded lower spirocha-
etal counts and on an island south of New Zealand, where
MS is reportedly less prevalent compared to the northern
hemisphere [15], the number of detected spirochaetes was
the lowest [29]. Ticks from Cape Sizun (France) yielded
negative results, and, unfortunately, the ticks collected on
the Falklands and the Crozet Islands (South Africa) were
dead and thus not examined by microscopy. Regardless of
the geographical origin, B. garinii DNA was isolated and
detected by PCR in all ticks and cultured spirochaetes,
with two notable exceptions. The samples from the Atlan-
tic coast of France and those from the Falklands - which
do not appear as particularly hot spots for MS [31,42] -
were all negative [29].

Seasonal correlation of MS and sporadic schizophrenia to 
Ixodes tick activity
If the stochastic annual fluctuations of schizophrenic
births [43] and Lyme disease [44] are taken into account,
the birth excesses of MS in Denmark [8] and those of
schizophrenia in Finland [45] are exactly nine months
apart. In northern Europe, the seasonal patterns thereby
reflect the activity of endemic Ixodes ricinus [44,46] at the
time of conception and parturition respectively. Likewise,
there exists a nine months' shift between MS birth excesses
in Canada near Vancouver [30,47] and schizophrenic
births in the USA [48]. The respective seasonal distribu-
tion exactly mirrors the periodicity of the adult and juve-
nile stages of B. burgdorferi transmitting I. pacificus ticks
along the West Coast [49] and that of I. scapularis ticks
along the East Coast (see [37]). Amongst all other neu-
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ropsychiatric disorders, only amyotrophic lateral sclerosis
(ALS) [50] shows a similar seasonal trend [30,51] with re-
spect to Ixodes tick activity in Europe [37] (see Figure 2).

Discussion
The uneven distribution of MS has been noted in the med-
ical literature for well over 100 years [52]. Although diffi-
cult to assess reliably from one geographical area to
another [11], it has also become clear that the frequency
of the disease varies significantly not only in different
parts of the world, but even within countries. The first ep-
idemiological study by Davenport (1922) pointed out
that MS affected persons of Scandinavian and Finnish de-
scent more than other ethnic groups, a conclusion con-
firmed by Bailey's study of American troops in World War

I. Later propositions that MS, as well as ALS [53,54], relate
to latitude and cold climate unleashed a controversy over
nature versus nurture that continues to this day (for re-
view see [11,12]).

Migratory seabirds spread B. burgdorferi sensu lato (B. 
garinii) worldwide
Since current opinion favours a genetic/immune process
for MS, as well as ALS, the possibility of spirochaetal infec-
tion has not been considered in depth. The similar global
distribution of seabird-borne ticks and Scandinavians and
their descendants, who appear to be at high genetic risk
for MS [55], is not entirely coincidental. One Viking leg-
end claims that the Faroes were discovered by following
marine birds [56]. While seabirds themselves often follow

Figure 1
Geographical correlation of schizophrenic birth excesses and MS prevalence to spirochaetal diseases The gradi-
ent of MS prevalence [15] and schizophrenic birth excesses [16,28] entirely spares the tropical belt where human treponema-
toses prevail [27]. In subtropical zones between the 37° latitudes, there exists an additional climatic effect diminishing the 
prevalence rates of MS worldwide. This 'rule' of variation by latitude, however, is violated in Europe, Australia and New Zea-
land where circumpolar migratory seabirds reportedly introduce Ixodes uriae and Borrelia garinii [29] from the MS hot spots in 
the north [12,15]. The arrows represent the migratory routes and distribution of seabirds if a number of species such as puffins 
(shearwaters), seagulls and terns are taken together [56–59]. The sites from where samples in search for Borrelia garinii were 
collected by Olsen et al. [29] are marked with a red dot and include the Egg and St. Lazaria Islands (Alaska), Gannet Island in 
Newfoundland (Canada), Iceland, the Falklands, the Faroes, Bonden Island (Sweden), Cape Sizun (France), the Crozet Islands 
(South Africa), and Campbell Island (New Zealand). There are just a few subtropical areas including Madeira, Morocco and 
Tunisia from where the presence of B. burgdorferi s.l. has been documented. Two protective factors could thus explain the rar-
ity of MS and schizophrenic birth excesses in developing countries: acquired immunologic resistance against spirochaetes in the 
tropics, and higher temperature being inversely related to tick-borne spirochaetal transmission in subtropical zones.
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ships and eat fish offal floating on the water suface [57],
the scandinavians were apparently led by such birds to
new fishing grounds [56].

Little more than 300 of the approximately 9000 known
bird species are seabirds. Yet, these birds occur throughout
the world and are the only group of birds to have success-
fully colonised Antarctica, the most inhospitable conti-
nent. Although some seabirds breed and winter within
comparatively small areas, many are champions in long
distance migration, travelling thousands of kilometres on
journeys from the far north of the northern hemisphere to
the limits of the Antarctic pack ice in the southern hemi-
sphere [57,58].

The seabirds, which spend most of their lives far out to
sea, must procreate on land. To avoid predators, they of-
ten breed on isolated islands and peninsulas leading to
the aggregation of hundreds of thousands, and sometimes
millions of pairs during the breeding season. The presence
of such huge numbers not only depends on the abun-
dance of food in the surrounding seas, the crowding habit

also makes the birds and their offspring vulnerable to the
seabird associated Ixodes uriae tick. No wonder, infesta-
tion by I. uriae has been reported from more than 50 spe-
cies of seabirds in both hemispheres (see [29]).

Because seabirds take their food from shallow waters,
many coastlines and islands are prime sites for breeding
colonies [57,58], Borrelia transmitting I. uriae [29], and
MS [56]. On the Faroe Islands (see Figure 1), where Ixodes
uriae reportedly transmits Borrelia from seabirds to human
bird catchers [59], the MS scenario apparently unfolded
after an annulled ban on fowling seabirds during a food
shortage in World War II [56]. Whatever speculation be
more plausible -  transmission by ticks [56] or soldiers
[12,14] -  the prevalence of MS subsequently rose from ap-
parently zero to 21 cases heralding the first of four succes-
sive epidemics [12].

On Iceland and elsewhere such epidemics have been at-
tributed to increased awareness, changes in ascertainment
or better diagnosis of MS, particularly of more benign cas-
es in the post-war era [11]. However, a common setting

Figure2
Seasonal correlation of neuropsychiatric birth excesses to Ixodes ticks and Lyme borreliosis in America and 
Europe In America, the seasonal distribution of schizophrenic [48] and MS [47] birth excesses exactly mirrors the periodicity 
of Ixodes scapularis along the East Coast [37] and that of Ixodes pacificus along the West Coast [49]. Curiously enough, in many 
studies conducted in the USA, the month of June is often the month with the lowest risk of developing schizophrenia (Jean-Paul 
Selten, personal communication, 2002). This schizophrenic birth deficit corresponds to the tick activity, which is at its lowest 
nine months earlier in September, being particularly striking, if both species Ixodes scapularis and Ixodes pacificus are taken 
together. If stochastic annual fluctuations are taken into consideration [43,44], the spring (a) population of Ixodes ricinus [37] 
likewise mirrors the significant birth excess rates of schizophrenia [45], ALS [51] and MS [8] in Europe. The nine months' shift 
between sporadic schizophrenia on the one hand and ALS and MS on the other reflects the possible transplacental transmis-
sion of Borrelia burgdorferi [23] at the time of conception [16] and delivery [24].
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for MS 'epidemics' is proximity to coastal areas or islands
where seabirds nest [56]. From western Alaska both the
presence of Ixodes uriae and B. garinii have been reported
[29], and in Sitka being surrounded by three major sea-
bird colonies in south-eastern Alaska (see Figure 1) MS
was unknown until its first outbreak occurred in 1965
[41].

Genetic [60,61] as well as epidemiological studies, in
which biological plausibility had been ignored [11], often
provided contradictory information. One of the signifi-
cant risk factors mentioned in a study from Key West
(Florida), for instance [62], were visits to a local military
base, a finding that the authors noted as a point of simi-
larity to the military occupation and its reported effect on
the Faroe Islanders [12]. In Malta, however, which was oc-
cupied by British troops from 1802 to 1978, the low PR of
MS doubled from 1978 to 1988 (from 4.2 to 8.4), after
the British left [11]. In contrast to Sicily with a relatively
high MS PR of 61, however, the population of Malta (see
Figure 1) still enjoys significant protection from MS that
cannot be convincingly explained by geneticists either. It
is noteworthy that since the Arabs were driven out by a
band of Scandinavian adventurers, who had established a
kingdom in southern Italy, Malta became a Norman ap-
pendage of Sicily for almost half a millennium. Yet, in ad-
dition to Scandinavian genes [55], Malta also hosts four
endemic races of lizards (Podarcis filfolensis), and ticks lose
their infectious potential for human beings when feeding
on these reptiles. This so-called zooprophylactic effect
also applies to the USA [35], where south of the 37° lati-
tude (see Figure 1) the PR of MS is significantly lower
[12,15]. The only notable exception is Florida [62], where
migratory seabirds stop over for nesting [56]. Otherwise,
infections by B. burgdorferi are poorly maintained by liz-
ards in the south of the United States [35]. While seabirds
are not common in states such as North Dakota, Mon-
tana, Idaho and Colorado where MS is high, the inland
spread of Ixodes ticks and Lyme disease by land birds is
well documented in the United States [63].

At the expense of a persistent vulnerability to lizards, the
tick-borne pathogen has proven successful in spreading
neuroborreliosis including MS via sub-polar routes [29]
across the globe (see Figure 1). European strains of B. gari-
nii infections have been documented in human cases
from the USA [64] and Australia [39]. The case of Lyme
borreliosis in the southern hemisphere has been con-
firmed by culture and serotyping [39]. Being of European
origin, this type of B. burgdorferi s.l. was most probably in-
troduced into Australia by a migratory seabird. Not sur-
prisingly after all, southern Australia and New Zealand,
which polar seabirds carrying Ixodes uriae [29] reach via
the Antarctic, score relatively high risks of MS. Even the
highest PR in these communities, largely originating from

the United Kingdom, is not much more than half the rate
in most parts of the British Isles [15]. This difference in rel-
ative risk is hard to understand from a purely genetic
point of view. But there isn't much room for 'pure' envi-
ronmentalists either, as Waikato in New Zealand, where
the main step in MS morbidity occurs across the North Is-
land, scores a lower rate than places in Australia on a com-
parable southerly latitude [2,15]. For migratory seabirds
introducing Ixodes uriae from the northern hemisphere
[29] reach New Zealand later than Australia (see Figure 1).

In the northern and southern hemispheres, several species
are responsible for this transhemispheric exchange. Great
puffins or Manx shearwaters (Puffini puffini), for example,
move around the world in giant loops. They are abundant
off the European continental shelf in July and August,
when they are heading southeast. Between September and
December, the puffins spend their time mainly along the
American coast form Rio de Janeiro in the north to the Rio
de la Plata in the south. Along these coasts, the nutrient-
rich water advances during this period with the Falkland
Current producing upwellings on the water surface rich in
fish. By March and April the birds leave their breeding col-
onies on the Falklands and other islands in the South At-
lantic heading northwest across the equator to the rich
fishing waters off Newfoundland. Then they gradually
move back across the North Atlantic, where they are often
seen around Scotland, Ireland and the Faroes, where the
traditional puffin-hunting season starts in the end of July
[57–59].

In the southern oceans, where the winds blow almost con-
tinuously eastwards in the roaring forties and furious fif-
ties, a ringed great puffin has even been found in south
Australia. The distribution of short-tailed puffins, or short
tailed shearwaters (Puffini tenuirostri), is limited to this
part of southern hemisphere, where the birds breed on is-
lands off the coast of New Zealand and Australia. In Tas-
mania, as in the Faroes, their so-called mutton-bird chicks
are regularly fowled [58].

Among the most successful and widespread marine birds
are the seagulls. There are some 45 species, which occur in
both hemispheres. Colonies may be tens of thousands
strong, particularly if there is a major source of food there-
by. Outside the breeding season most gulls, such as the
black headed gull (Larus ridibundus), undertake migratory
movements, sometimes wintering well out to sea. They
move parallel to latitude to avoid cold weather, or they
simply disperse over comparatively short distances along
rivers [58,65] (see Figure 1). Along the tributaries of the
upper Rhine [65] they thus reach the foot of the Swiss Alps
where B. garinii has become highly endemic among other
terrestrial passarine birds. These, in turn, may spread bor-
reliosis to other hosts [66] by regularly migrating to north-
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ern [67] and southern Europe either along the valley of
the upper Rhone or directly via Alpine passes (personal
communication 2002, Christian Marti, Swiss Ornitholog-
ical Institute, Sempach).

The seasonal correlation of MS to Ixodes ticks may explain 
hitherto discrepant findings
Extending a previous report from the United States, Tem-
pler and colleagues found a high geographical correlation
between MS and schizophrenia in Italy [7]. As a correct
temporal relation between cause and effect is essential in
epidemiology [6], correlated birth patterns of MS and
schizophrenia were then studied. In Denmark, a signifi-
cant birth excess of MS was disclosed in spring-early sum-
mer, but the data on schizophrenia were insignificant
compared to the general population [8]. This negative
finding, which can be explained by stochastic fluctuations
(for discussion see [43]), was unfortunate since accumu-
lating evidence from most other studies [28] did yield sig-
nificant schizophrenic birth excesses in winter and spring.

In Sicily, interestingly enough, MS birth excesses being
shifted towards the end of the year [68] show a seasonal
trend reminiscent of the seasonal Ixodes tick activity in
neighbouring North Africa [37]. And in Tunisia, where Ix-
odes ticks harbour B. garinii and B. lusitaniae [34] -  species
known to be scattered geographically by birds from Eu-
rope - MS scores the highest rates in Africa [15].

Temperature and spirochaetal virulence: the genetic inter-
face between immunity and environment
MS has never been reported in ethnically pure Eskimos,
Inuit, Lapps, Amerindians, Australian aborigines, New
Zealand Maoris or Pacific Islanders [11]. Yet, most of
these natives either live near the polar circle, where tick ac-
tivity abates due to low ambient temperature, or they live
in tropical climates where Treponema [27] but not Borrelia
spirochaetes prevail (see Figure 1).

The most convincing evidence for the importance of ge-
netic or acquired resistance is the extreme rarity of MS in
native Africans. In the Cape Province of South Africa, the
disease is recognised among the so-called coloured, but
neurologists in Johannesburg are extremely reluctant to
make the diagnosis in a black person [11]. Hawkes [14]
maintains that in developing countries a general immuni-
ty is acquired against infection, which might also spread
"in utero or during parturition" and possibly increases the
resistance against MS and sexually transmitted disease.
Until the early nineties, I was working as a medical dele-
gate in southern Africa and cannot share Hawkes's opin-
ion on the isolation of 'black' Africans from 'white' sexual
permissiveness. Venereal diseases including syphilis were
highly prevalent among natives of South Africa, Angola
and Mozambique, and in that part of the world it is the in-

cidence of AIDS, but not MS, which has substantially ris-
en. The "infrequency of MS and AIDS in the same patient"
[14] rather favours the hypothesis of a hyperergic immune
process [2,3] which is suppressed in a state of immunode-
ficiency such as AIDS.

Whilst it is always more prudent to await the discovery of
new facts [69], long-held [25] hypotheses [14] often raise
testable questions if taken together and dissected with Oc-
cam's razor. The MS gradient, which sharply declines at
the 37° latitude, suggests a temperature-related environ-
mental factor that cannot be ignored (see Figure 1). The
geographical distribution of endemic treponematoses, by
contrast, as well as blood group 0 antigens which appear
to convey resistance against Treponema pallidum [70], are
restricted to exactly those parts of the tropics that are free
of MS. This contrast is of evolutionary importance with re-
gard to the adaptation of intracellular pathogenic spiro-
chaetes. Like the AB0 blood group system [71], the
evolutionary conserved heat shock proteins (HSPs) do
not only induce heat resistance, but also activate host im-
mune defences that are detrimental for pathogens (see for
example [72–78]).

Molecular evidence reveals that Treponema pallidum  - the
agent of syphilis being an exclusively human pathogen
and B. burgdorferi s. l.  - the human and animal pathogens
of Lyme borreliosis - have circumvented this immunolog-
ical impasse differently. Whilst in the course of evolution
Treponema pallidum, being directly transmissible from hu-
man to human, lost its capacity to induce HSPs [79], heat
resistance [80] and thus vector-borne transmission, B.
garinii has adapted to a broad temperature range [81]. To
survive heat shocks during vector-borne transmission, the
gram-negative Borrelia pathogen therefore expresses HSP-
60 and HSP-70 [82], which are members of the evolution-
ary conserved HSP family. This form of vector adaptation
is essential during rapid changes in temperature, in partic-
ular when transmitted from ticks to their warm-blooded
hosts [83] including birds.

In the absence of other vertebrate hosts on certain islands,
the presence of Borrelia in I. uriae ticks suggests seabirds
to be competent reservoirs and amplifying hosts. In con-
trast to B. burgdorferi sensu stricto being cleared from the re-
spective Ixodes vectors at 37°C [84], a temperature of
38°C is permissive for the transmission of B. garinii [81].
The relatively low body temperature of 38°C in marine
birds, compared to the body temperature of terrestrial
birds of 40°C, explains why these B. burgdorferi s.l. spiro-
chaetes are particularly adapted to seabirds [29].

But the pathogen's success of transmission also depends
on its ability to replicate and survive within a host for long
periods. One option is to remain latent inside the long-
Page 7 of 13
(page number not for citation purposes)



International Journal of Health Geographics 2002, 1 http://www.ij-healthgeographics.com/content/1/1/5
lived cells of the CNS whose temperature is about 38° in
humans. This coincidence elucidates the characteristic
spread and neurotropism of B. garinii, which is frequently
associated with neurological manifestations [85]. In vitro
evidence suggests early invasion of the CNS by B. burgdor-
feri sensu lato by adherence of this organism to sphingoli-
pids [86]. Functionally linked to a flagellar protein, HSP-
60 is thereby involved in binding to the neural cell surface
for intrusion into the CNS [87,88]. As HSP-60 is a major
immunodominant antigen of B. burgdorferi [89], it comes
as no surprise that antibodies to HSP-60 were also detect-
ed in the synovial fluid of Lyme arthritis patients [90]. Al-
though still a controversial issue [91–93], molecular
mimicry of flagellar epitopes, which are highly antigenic
[94], may misdirect antibodies against host tissues as well
[95,96]. For pathogens must avoid being destroyed by the
immune response while maintaining access to a new host,
and protracted antigenic exposure destabilises the im-
mune system.

Molecular, pathologic and microbiological evidence for an 
involvement of Borrelia burgdorferi
Epidemiology cannot replace molecular, experimental
and pathological investigation including case reports, de-
spite the fact that these are often dismissed as 'anecdotal'.

Is it possible that the Borrelia flagellar basal rod protein
(fbrp), implicated in the pathogenesis of sporadic schizo-
phrenia at conception [16,97,98], also plays a pathogenic
role in MS following transmission at birth? As fbrp shares
an epitope with the human interleukin-1 receptor antago-
nist IL-1ra (see Table 1 an [99]), it is plausible to assume
that such amino acid homology between B. burgdorferi
and its human host potentially induces and misdirects
anti-IL-1ra antibodies. Might re-exposure to the same
[100] or similar antigens [101,102] subsequently trigger
MS later in life? Conversely, may cross-reacting antibodies
acquired against Treponema spirochaetes protect migrants

from tropical countries against infection by Borrelia spiro-
chaetes and thus antigenic exposure to fbrp?

Not only tropical spastic paraplegia [14] mimics the clin-
ical pattern of MS. In several respects, MS is more reminis-
cent of neuroborreliosis [102–105], which in its chronic
form is supposed to be an autoimmune disease triggered
by these spirochaetes [95,105]. MS plaque-derived DNA
[106] shows an abundance of transcripts for several heat
shock proteins (HSPs), including HSP-70 and anti-HSP-
70 antibodies, but apparently not for interleukin-1 (IL-
1β), the underlying pro-inflammatory cytokine (see also
[107–110]). This contrasts with other common gram-neg-
ative infection, in which HSP-70 induction correlates with
elevated levels of IL-1β transcripts [111]. A putative anti-
IL-1ra immune response against IL-1 receptor antagonists
(IL-1ra) might therefore explain this specific post-tran-
scriptional dysbalance at the level of the IL-1 receptor un-
leashing a cascade of ruinous inflammatory cytokines.
There are three arguments in support of such a role: re-
duced genetic expression of IL-1ra versus IL-1β has been
associated with disease severity in MS [112]. IL-1ra can be
increased by interferon beta [113], the first neuromodula-
tory drug approved for the treatment of MS [4]. Converse-
ly, lower IL-1ra versus higher IL-1 activity enhances
inflammation, whereas a dysbalance in favour of IL-1ra
versus IL-1 reportedly mitigates this reaction in MS, exper-
imental allergic encephalomyelitis (EAE) and B. burgdor-
feri induced Lyme disease [114,115].

When in 1925 Adams et al. [116] inoculated rhesus mon-
keys with material from MS plaques, spirochaetes
emerged in their ventricular fluid after several months.
More recently, cystic structures originating from B. burg-
dorferi were found in eight of ten MS patients by immun-
ofluorescence and in all the MS patients by use of
transmission electron microscopy and staining after cul-
ture [21]. The patients originated from a well-defined
coastal area of southern Norway, where Lyme borreliosis

Table 1: Possible molecular mimicry between Borrelia burgdorferi fbrp and human interleukin-1 receptor antagonist

The occurrence of homologies between B. burgdorferi flagellae and host molecules has been amply demonstrated [95,96]. This phenomenon, termed 
molecular mimicry, explains why an antibody generated against a particular epitope of an infectious pathogen may become an autoantibody, reacting 
with a homologous epitope in the host and bringing about structural dysfunction or tissue damage. The autoimmune response will continue to 
attack the host even after clearance of the pathogen from the infected organism. However, autoimmunity by molecular mimicry will only occur if 
epitopes of the pathogen and of the host are similar enough to allow immunological cross reaction, yet different enough to break immunological 
tolerance [101]. The homology was assessed by protein BLAST using the search program at OMIM [99] for short, nearly exact matches. Length = 
153, Score = 27.8 bits (58), Expect = 15, Identities = 10/18 (55%), Positives = 15/18 (82%), Gaps = 1/18 (5%). Accession numbers: B. burgdorferi 
fbrp:1448943; Human interleukin-1 receptor antagonist: 999512.
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[117,118] as well as MS [12,15] is highly endemic. No
such cysts could be observed in the five controls with ei-
ther method, but the investigators noted a similarity be-
tween those found in the MS patients and the cystic forms
characteristic of spirochaetes and chronic B. burgdorferi in-
fection. More importantly, the cysts of the MS patients ex-
hibited positive reactions to antispirochaetal antiserum
[21].

In analogy to the induction of heptocellular carcinomas
upon chronic hepatitis B infection acquired during deliv-
ery [24] and in analogy to lymphomas of the skin induced
by chronic B. burgdorferi s.l. infection [117,118], we would
expect an association of MS and ALS with neoplastic trans-
formations of the lymphatic system. A significant correla-
tion between non-Hodgkin's lymphomas and MS appears
to exist [119], and in a review of neurolymphomatosis a
case was documented with schizophrenia and anterior
horn involvement, a hallmark of ALS [120]. As the cause
could not be identified, a virally mediated autoimmune
pathogenesis was proposed.

Whatever the pathogenic link between schizophrenia and
MS - an infection followed by an altered immunologic re-
sponse [5] or a continuum of chronic inflammatory CNS
disorders including neuroborreliosis, syphilis, or viral en-
cephalitis [121] - we would expect an analogous link be-
tween schizophrenia and ALS in terms of latitude [53,54],
season (see Figure 2) and causality [122].

Among relatives of Ashkenazi immigrants to metropoli-
tan New York suffering from schizophrenia [123], the
prevalence of ALS compared to the expected population
rate in the USA, where B. garinii is non-endemic, was more
than a hundred times higher. Not surprisingly after all, the
countries of ancestral origin included eastern Europe and
Russia [123] areas where B. garinii is endemic [117,118].

Up to ten percent of patients initially diagnosed as having
ALS are re-diagnosed as having a disease other than ALS
[124]. Although it seems unlikely that infection by B.
burgdorferi is a frequent cause of ALS [117], a discrete sub-
set of patients living in hyperendemic areas appears to be
significantly more likely to have immunologic evidence of
exposure to B. burgdorferi than do controls, and some of
these patients do appear to improve if treated with antibi-
otics [125].

Is the epidemiological association biologically plausible?
Although the nosological criteria for MS and schizophre-
nia have high diagnostic reliability, affected individuals
may differ substantially in the specific profile of signs and
symptoms, as well as in the severity and course of their ill-
ness. What we recognise clinically as 'schizophrenia' or
'MS', is likely to encompass a complex set of disorders. A

major task of future studies will thus be to resolve the
question of heterogeneity in MS [2] as well as its aetiologic
overlap with other disease processes.

Seroepidemiological studies relating B. burgdorferi to MS
[126–128] and ALS [125,129,130] have produced con-
flicting results. However, when entering the CNS, micro-
organisms can undergo antigenic [131] and extensive
metabolic changes, which prevent them from being recog-
nised by the current serologic test methods. These changes
protect B. burgdorferi from the host's immune system and
reduce the effect of antibiotics [21,132]. Although infec-
tions all induce specific antibodies and cell-mediated im-
munity, microbial virulence factors have not often been
individually defined or even identified [133]. There are
hundreds or thousands of antigens, and immune respons-
es develop to many of these. Resistance to infection, how-
ever, depends on the reaction against a few antigens on
the surface of the microorganism [133]. The flagellar basal
rod protein of B. burgdorferi (fbrp) responsible for loco-
motion, adherence and host cell penetration is part of
such a virulence factor. Influencing parasite-host interac-
tion, gram-negative bacteria use this type of basal ring as-
sembly to secrete and translocate flagellar and virulence
proteins directly into the cytoplasm of their host cell
[134]. While temperature is a key environmental cue for
the switch between motility and plasmid-encoded gene
expression of virulence, stress-related degradation of the
secreted substrates is accordingly prevented by the chaper-
onising function of HSPs [135]. The coincidence of both
genetic and antigenic exposure to Borrelia fbrp is therefore
not casual, but a highly specific pathogenic event. Muta-
tions by homologous recombination affecting the im-
planting blastocyst at conception [16] and chronic
infection afflicting the immunologically immature new-
born upon delivery [24], it is conjectured, will subse-
quently trigger sporadic congenital schizophrenia and MS
respectively.

Conclusion
That maternal infection by B. burgdorferi s. l. poses a risk
to the neonate cannot be excluded. The global epidemio-
logical clustering by season and locality rather emphasises
a causal relation between MS and sporadic schizophrenia,
which derives from both genetic and antigenic exposure
to a spirochaetal virulence factor at conception and birth.
The identification of flagellar Borrelia DNA on human
CB1 and its relation to IL-1 receptor dysfunction reminds
us of Virchow's postulate in 1849: "In searching for path-
ological systems one must clearly not construct nosologi-
cal but only etiological ones" [136]. It is hoped that this
correlation might encourage a new direction of neuropsy-
chiatric research in molecular epidemiology.
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List of abbreviations used
AIDS: acquired immunodeficiency syndrome

ALS: amyotrophic lateral sclerosis

B. burgdorferi s.l.: Borrelia burgdorferi sensu lato

CB1: central cannabinoid receptor gene

CNS: central nervous system

DNA: desoxyribonucleicacid

EAE: experimental autoimmune encephalomyelitis

fbrp: flagellar basal rod protein

HLA: major histocompatibility complex

HSP: heat shock protein

IL-1: interleukin-1

IL-1ra: interleukin-1 receptor antagonist

MS: multiple sclerosis

PR: prevalence rate
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